首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

2.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

3.
Precipitation intercepted by forests plays a major role in more than one‐fourth of the global land area's hydrologic cycle. Direct in situ measurement of intercepted precipitation is challenging, and thus, it is typically indirectly estimated through comparing precipitation under forest cover and in the open. We discuss/compare measurement methods for forest precipitation interception beyond classical budgeting and then recommend future directions for improving water storage estimation. Comparison of techniques shows that methods submerging tree components produce the largest water storage capacity values. Whole‐tree lysimeters have been used with great success at quantifying water storage for the integrated system yet are unable to separate trunk versus canopy storage. Remote sensing, particularly signal attenuation, may permit this separation. Mechanical displacement methods show great promise and variety of techniques: pulley/spring system, branch strain sensors, trunk compression sensors and photography. Relating wind sway to water storage also shows great promise with negligible environmental disruption yet is currently at the proof‐of‐concept stage. Suggested future directions focus on development of common features regarding all discussed methods: (i) measurement uncertainties or processes beyond interception influencing the observed signal, (ii) scaling approaches to move from single tree components to the single‐tree and forest scales and (iii) temporal scaling to estimate the relevance of single‐interception components over longer timescales. Through addressing these research needs, we hope the scientific community can develop an ‘integrated’ monitoring plan incorporating multiple measurement techniques to characterize forest‐scale water storage dynamics while simultaneously investigating underlying (smaller‐scale) components driving those dynamics across the spectrum of precipitation and forest conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Interception is one of the most underestimated processes of the hydrological cycle. However, it amounts to a substantial part of the terrestrial evaporation and forms a direct feedback of moisture to the atmosphere which is important to sustain continental rainfall. Most investigations on interception focus on canopy interception only, whereas the interception by the surface and forest floor may be of same order of magnitude. Moreover there is a regional bias. Most research has been carried out in Europe and America and little is known about interception in Africa. This paper presents a study on forest floor and canopy interception in a savannah ecosystem. The study deals with both interception storage capacity of different vegetation types and the related moisture fluxes. The interception storage capacity of Msasa leaf litter and of Thatching grass is 1.8 mm and 1.5 mm respectively. This water storage capacity is dependent on storm intensity, with high intensity storms resulting in smaller storage capacity than less intensive storms. Canopy interception for the study period averaged 25% of the total rainfall, which is comparable with other studies. More importantly, the study revealed that combining canopy and forest floor interception yields a total interception flux amounting to 37% of the rainfall, or close to 50% of the total evaporation. This is a significant amount which implies that interception of both canopy and forest floor should be included in hydrological modelling and that interception is relevant for water management.  相似文献   

5.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

7.
The water‐holding capacity (WHC) of the understory in the headwater regions of major rivers plays an important role in both the capacity of the forest water reservoir and water quality and quantity in the butted rivers. Although forest gaps could regulate water‐holding patterns in the understory by redistributing coarse woody debris (CWD), fine woody debris (FWD), non‐woody debris (NWD) and understory vegetation, little information is available on the effects of forest gaps on understory WHC. Therefore, we investigated the WHCs of CWD, FWD, NWD, herbaceous vegetation, mosses, epiphytes (including fern and lichen growing on the surface of logs) and soils from the gap centre to the adjacent closed canopy in an alpine forest at the upper reaches of the Yangtze River. The total WHC of the alpine forest understory components was approximately 300 mm. Soil layer had the largest contribution to the total understory WHC (90%), and among the aboveground components, CWD and mosses contributed 5% and 4% to the aboveground WHC, respectively. With the exception of that of the herbaceous layer, the WHC of the forest floor increased from the gap centre to the closed canopy. Although mosses had the lowest biomass allocation on the alpine forest floor, the water‐holding ratio (k) of mosses reached 485%. In conclusion, biomass is the parameter that most strongly and positively correlated with the WHC of the alpine forest understory, and forest gap formation decreases the understory WHC of alpine forest resulting from a decrease in organic soils, CWDs and mosses. Copyright © 2015 John Wiley & Sons, Ltd. Highlights
  • The effects of gaps on the understory WHC were examined in an alpine forest.
  • Gaps decreased the understory WHC by decreasing the amounts of the larger WHC components.
  • The contribution of CWD and mosses to the aboveground WHC was large.
  • The WHC of dead debris was higher than that of the vegetation.
  相似文献   

8.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

9.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage.  相似文献   

10.
Estimation of interception capacity of the forest floor   总被引:29,自引:0,他引:29  
Methods of measuring interception capacity of the understorey (grasses) and litter layer have been developed to estimate the forest floor interception capacity of a 15-year-old Pinus radiata plantation and a native dry sclerophyll eucalypt forest at Lidsdale State Forest, Australia.

In this study, interception by various types of forest floor have been measured in the laboratory using a technique of applying artificial rain to undisturbed samples of the forest floor. These laboratory experiments separately measure the interception storage capacity of the pine needle mat, the leaf/twig/bark debris mat in the eucalypt forest, and of the understorey (grasses). The results indicate that the interception storage capacity of all components of the forest floor of both vegetation types were proportional to the mass per unit area of forest floor cover. It was also shown that the interception storage capacity of the pine needle mat and the leaf/twig bark debris mat under eucalypt were proportional to the thickness of the surface debris. For standing grasses the capacity was proportional to the percentage of ground cover. These laboratory results were then used to estimate the forest floor interception storage capacity of two experimental catchments each covered by one of the two forest types.

In each case the forest floor was extremely heterogeneous, and so a large number of undisturbed samples were examined. Approximate forest floor interception capacity of the pine catchment was 2.8 mm and of eucalypt was 1.7 mm. The contribution of leaf litter, stem and branch litter, and grass vegetation to the overall interception capacity was similar for both catchments at 47%, 8% and 45%, respectively.  相似文献   


11.
The combination of tree canopy cover and a free water surface makes the subcanopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. Subcanopy vapour fluxes and energy budgets represent key controls on water level and understorey climate but are not well understood. In a permanently flooded forest in south‐eastern Louisiana, USA, an energy balance approach was used to address (a) whether evaporation from floodwater under a forest canopy is solely energy limited and (b) how energy availability was modulated by radiation and changes in floodwater heat storage. A 5‐month continuous measurement period (June–November) was used to sample across seasonal changes in canopy activity and temperature regimes. Over this period, the subcanopy airspace was humid, maintaining saturation vapour pressure for 28% of the total record. High humidity coupled with the thermal inertia of surface water altered both seasonal and diel energy exchanges, including atypical phenomena such as frequent day‐time vapour pressure gradients towards the water surface. Throughout the study period, nearly all available energy was partitioned to evaporation, with minimal sensible heat exchange. Monthly mean evaporation ranged from 0.7 to 1.7 mm/day, peaking in fall when canopy senescence allowed greater radiation transmission; contemporaneous seasonal temperature shifts and a net release of stored heat from the surface water resulted in energy availability exceeding net radiation by 30% in October and November. Relatively stable energy partitioning matches Priestley–Taylor assumptions for a general model of evaporation in this ecosystem.  相似文献   

12.
Stemflow of a dry sclerophyll eucalypt forest and a nearby Pinus radiata plantation was studied on a rainfall event basis. The stemflow yields of the forests are quantified, compared, and presented on an annual basis for four years. Yields of the individual eucalypt species are compared and the tree characteristics responsible for the yield differences are discussed. The influence of event size, type, and season on stemflow are also shown. Rainfall angle is shown to have a significant effect on stemflow yield.  相似文献   

13.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Annual fluxes of canopy‐level heat, water vapour and carbon dioxide were measured using eddy covariance both above the aspen overstory (Populus tremuloides Michx.) and hazelnut understory (Corylus cornuta Marsh.) of a boreal aspen forest (53·629 °N 106·200 °W). Partitioning of the fluxes between overstory and understory components allowed the calculation of canopy conductance to water vapour for both species. On a seasonal basis, the canopy conductance of the aspen accounted for 70% of the surface conductance, with the latter a strong function of the forest's leaf area index. On a half‐hour basis, the canopy conductance of both species decreased non‐linearly as the leaf‐surface saturation deficits increased, and was best parameterized and showed similar sensitivities to a modified form of the Ball–Berry–Woodrow index, where relative humidity was replaced with the reciprocal of the saturation deficit. The negative feedback between the forest evaporation and the saturation deficit in the convective boundary layer varied from weak when the forest was at full leaf to strong when the forest was developing or loosing leaves. The coupling between the air at the leaf surface and the convective boundary layer also varied seasonally, with coupling decreasing with increasing leaf area. Compared with coniferous boreal forests, the seasonal changes in leaf area had a unique impact on vegetation–atmosphere interactions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The magnitude of soil water repellency in a dry sclerophyll eucalypt forest was measured periodically over four years. The varying responses from a range of sites within the forest are discussed and the effect of amount and frequency of rainfall is shown. It was found that some weeks of consistently wet weather were required for water repellency breakdown, and a frequency of rainfall much greater than normal in the study area for it to remain broken down. Even after an extended period of breakdown, it was found that repellency can be reestablished after one week of hot dry weather. Laboratory tests were used to examine the major repellency processes; three were identified and the relative importance of each considered in the context of the field study. The relative influence of each depended on the physical and chemical characteristics of the sites. The repellent soil samples were more repellent to water of throughfall origin, and even more repellent to stemflow than to distilled water. The repellency response also varied with the type of vegetative cover present. The influence of these phenomena on the preservation of water repellency and the relevance of repellency in macropore infiltration processes are discussed.  相似文献   

16.
In the eastern United States, the use of prescribed fire as a silvicultural technique to manage for desirable upland tree species is increasing in popularity. Bark physical properties such as thickness, density, and porosity have known associations with fire tolerance among species. These physical properties simultaneously influence rainfall interception and canopy storage and thus are of interest across a range of disciplines. Furthermore, while these characteristics are innate to a species, it is unknown whether repeated exposure to fire facilitates physical change in bark structure and whether these changes are consistent among species. To answer these questions, bark samples were collected from mature pine (Pinus taeda L.) and oak (Quercus montana Willd.) trees from sites across the Bankhead National Forest in Alabama, USA under three different burn regimes: 3-year cycle, 9-year cycle, and no fire. Samples were analysed in the laboratory for bulk density, porosity, water storage capacity, and hygroscopicity (the amount of atmospheric water vapour absorbed by bark during non-rainfall conditions). Drying rates of saturated samples under simulated wetting conditions were also assessed. Oak bark had higher bulk density, lower porosity, and dried slower than pine bark. Interestingly, bark from both species had lower bulk density, higher porosity, greater water storage capacity, and dried faster in stands that were burned every 3 years compared to other fire regimes (p < 0.001). In summary, this study demonstrates that prescribed fire regimes in an eastern US forest alter bark structure and thus influence individual tree control on hydrological processes. The increase in bark water storage capacity, coupled with faster bark evaporation times may lead to less water inputs to the forest floor and drier overall conditions. Further investigation of this fire-bark-water feedback loop is necessary to understand the extent of these mechanisms controlling landscape-scale conditions.  相似文献   

17.
Water yields increased after logging by 150–250 mm per year in small catchments of moist old-growth eucalypt at Karuah in central New South Wales. The magnitude of this initial increase was directly related to the percentage of the catchment logged (29–79%). Where substantial vegetation removal took place in less than 20% of one catchment no increased water yield was observed. Water yields began to decline in all catchments 2–3 years after logging as regrowth eucalypts became established, and the rate of this decline was related to the mean stocking rate of eucalypt regeneration during the next 4 years. This water yield decline exceeded 250 mm in the sixth year after logging in the catchment with the highest stocking of regeneration and the highest regrowth basal area. Water yields in this catchment had declined to levels significantly below pre-logging levels by this time, supporting the notion that regrowth evapotranspiration had begun to exceed that of the old-growth forest. Patterns of declining water yield in the other catchments suggest that yields in some may also decline below pre-logging levels as regrowth evapotranspiration increases in line with increases in the basal area of the regrowth forest. Further study is required to determine the magnitude and duration of water yield reductions in these regrowth catchments, and to quantify the eucalypt growth rates and stand conditions responsible for the reductions. Nevertheless, these early results are consistent with water yield changes observed in mountain ash forest in Victoria, and support the concept of greater water use by a rapidly regenerating forest.  相似文献   

18.
The rainfall received by a small plot of tropical deciduous forest on sand dunes in Veracruz, Mexico, was partitioned into stemflow and throughfall components to determine whether funnelling by stemflow could reduce soil leaching by transmitting large volumes of water through vertical soil pathways beneath each stem. Although soil infiltration capacities were high, only a very small proportion of incoming rainfall was funnelled by canopy stems. This is attributed to the widely-branched morphology of mature trees. Smaller trees and shrubs were more effective funnellers of rainfall, and a crude estimate of the magnitude of stemflow in the understorey stratum in one rain event suggested a contribution approximately ten times that of canopy stemflow. However, even if augmented by the understorey stratum in this way, total stemflow is unlikely to have exceeded 10 per cent of gross precipitation, implying that it does not represent an important leaching-avoidance mechanism in this forest.  相似文献   

19.
The aim of this study is to understand the canopy interception of Qinghai spruce forest under conditions of different precipitation characteristics and canopy structures in the upper reach of Heihe River basin, northwestern China. On the basis of a continuous record covering our investigating period by an automatic throughfall‐collecting system, we analysed the relationships between the canopy interception and the precipitation characteristics. Our results support the well‐established exponential decay relationship between the gross precipitation and the interception percentage after the canopy is saturated. But our results sufficiently illustrate a notable point that the variations in the interception percentage are almost independent from the variations in the gross precipitation before the canopy is saturated. Our examination into the relationship between the interception and the 10‐min average intensity of precipitation demonstrates a divergent relationship, and the divergent relationship is bracketed by an upper ‘dry line’ indicating that 100% of gross precipitation was intercepted before saturation and by a lower ‘wet line’ suggesting that the actual canopy storage capacity reached the maximum and evaporation was the only component of the interception. To search for the relationship between canopy structures and interception, we grouped the canopy covers over the 90 throughfall‐collecting tanks into ten categories ranging from 0 (no cover) to 0.9 (nearly completely covered), and the corresponding canopy interception was calculated by subtracting the averaged throughfall of each canopy‐cover category from the gross precipitation. The results show that the interception percentage increases faster with increasing canopy cover under intermediate rainfall conditions than that under heavy rainfall conditions. Unexpectedly, under light rainfall conditions the increasing rate of interception percentage with increasing canopy cover and also with increasing plant area index is not faster than that under the intermediate rainfall conditions simply because the tank‐measured percentage of interception was extremely high at near‐zero canopy cover conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The storage capacity of a temperate mixed oak–beech stand was investigated as a function of stand density and species composition. Measurements were performed in selected zones delimited by three neighbouring trees. Three independent approaches were compared: (i) a spraying laboratory experiment to estimate the water storage on foliage before and after dripping; (ii) a mechanistic model describing rainfall partitioning within the forest canopy and providing estimates of foliage storage capacities; and (iii) linear regression analyses to evaluate the canopy (foliage + branches) storage capacity using the relationship between throughfall and rainfall. Good agreement was generally observed between the laboratory experiment and the mechanistic model estimates, while estimations from the regression method tended to exceed those from the other approaches. Storage capacity estimates ranged from 0·22 mm to 0·80 mm for pure oak zones, from 0·24 mm to 1·12 mm for mixed zones and from 0·53 mm to 1·17 mm for pure beech zones. The increase of storage capacity with increasing proportion of beech in the canopy resulted from higher beech LAI compared with oak. Similarly, for mixed and pure beech canopies, storage capacity was higher for high density zones than for low density zones as a result of the increase in LAI with increasing local basal area; in contrast, for pure oak, the storage capacity was not related to basal area because of the lower shade‐tolerance of this species compared with beech. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号