首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A seven year event-based study partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and a Pinus radiata plantation. Resulting information will be of use for process modelling. Stemflow was influenced by event type, rain angle having a major effect; and the yields of the different species are compared. Tree characteristics that influenced stemflow yields are outlined and discussed. The canopy storage capacity of the eucalypt forest was determined and the influence of species composition is shown. The likely influence of climate variations is discussed. The canopy storage capacity is compared to the interception values estimated for continuous events of various sizes. The interception of the eucalypt forest and the pine plantation are compared on event basis for event size classes and on an annual basis. The comparative interceptions for continuous events are also discussed, while the effect of thinning the pine plantation on throughfall, stemflow, and interception is shown. The hydrological consequences of this study are: more informed judgment can be made about techniques for measurement of throughfall, tree structural characteristics (species related) can more adequately be considered when selecting trees for measurement of stemflow, and the stemflow yields can in some cases be better understood from the information about effect of event type. This paper deals with the influence of measurement method, species composition, and tree characteristics on the estimation of throughfall in the eucalypt forest. The site is near Canberra, lat. 35°S, 145°E, with annual rainfall about 650 mm. Two methods of measuring throughfall are compared: randomly placed, 200 mm cylindrical gauges (standard) and 50 mm square opening wedge type gauges (plastic), and randomly placed 5 × 0–22 m troughs. Despite the high placement density (150 to 225 ha?1), throughfall estimates from gauges has high variance and consistently underestimated those of the troughs, which had a total opening equivalent to 2325 raingauges (200 mm diameter) per hectare. Local concentration of stemflow into drip points provided by detaching bark pieces of one smooth barked species, Eucalyptus mannifera, is believed to be the principal cause of the lower collection and greater variance of the gauges. The low leaf area index (1–3) and large wood area of the forest together with a pendulous vertical habit of the leaves also contributed. The presence of E. mannifera is shown to substantially affect the relative values of throughfall as measured by troughs and gauges. The plastic receivers were found to underestimate rainfall or throughfall relative to the standard gauges, particularly for fine drop rainfall in multiperiod events.  相似文献   

2.
A study of partitioning of rainfall into throughfall, stemflow, and interception was conducted in a dry sclerophyll eucalypt forest and an adjacent pine plantation over a period of seven years, on a rainfall event basis. The following three issues are discussed: (1) the relationship between canopy storage capacity and interception of continuous events, (2) interception, throughfall, and stemflow, and (3) the effect on interception of thinning the pine plantation.
  • 1 The canopy storage capacity/interception interaction for the eucalypt forest was assessed by comparing a gravimetric estimate of canopy storage capacity with interception. The maximum possible value for canopy storage capacity was found to be a small proportion of interception for events of all sizes. This suggests that evaporation of intercepted water during the continuous events was responsible for most of the interception. This ‘within event’ evaporation appears to be responsible also for the net rainfall/gross rainfall estimate of canopy storage capacity being four times the gravimetric value. For the pines the regression estimate was more closely related to interception.
  • 2 Interception, throughfall, and stemflow of these forests were measured for four years. Data are presented for each year with overall average interception being 11-4 per cent of precipitation for the eucalypt forest and 18-3 per cent for the pine plantation. Topography and rainfall event type are considered in the comparison.
Species composition and tree type are considered when comparing these results with published studies from similar forest types in southeastern Australia. The periodic (annual) variations of interception in this and the other studies makes comparison difficult.
  • 3 The effect of thinning on the throughfall, stemflow, and interception in a Pinus radiata plantation is examined. Throughfall increased, interception decreased but not in proportion to the removed biomass; stemflow decreased on an area basis, but increased on a per tree basis. A positive relationshiip is established between interception and stemflow on the thinned plantation but not in the unthinned. Reasons for this are suggested. The results are compared to those reported from similar experiments in other forests.
  • 4 The periodic variations in interception and errors inherent in its estimation suggest that caution should be exercised when using average interception figures in water balance studies.
  相似文献   

3.
Many studies have focused on the amount of stemflow in different forests and for different rainfall events, but few studies have focused on how stemflow intensity varies during events or the infiltration of stemflow into the soil. Stemflow may lead to higher water delivery rates at the base of the tree compared with throughfall over the same area and fast and deeper infiltration of this water along roots and other preferential flow pathways. In this study, stemflow amounts and intensities were measured and blue dye experiments were conducted in a mature coniferous forest in coastal British Columbia to examine double funnelling of stemflow. Stemflow accounted for only 1% of precipitation and increased linearly with event total precipitation. Funnelling ratios ranged from less than 1 to almost 20; smaller trees had larger funnelling ratios. Stemflow intensity generally was highest for periods with high‐intensity rainfall later in the event. The maximum stemflow intensities were higher than the maximum precipitation intensities. Dye tracer experiments showed that stemflow infiltrated primarily along roots and was found more frequently at depth than near the soil surface. Lateral flow of stemflow was observed above a dense clay layer for both the throughfall and stemflow experiments. Stemflow appeared to infiltrate deeper (122 cm) than throughfall (85 cm), but this difference was in part a result of site‐specific differences in maximum soil depth. However, the observed high stemflow intensities combined with preferential flow of stemflow may lead to enhanced subsurface stormflow. This suggests that even though stemflow is only a very minor component of the water balance, it may still significantly affect soil moisture, recharge, and runoff generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The canopy storage capacity of a dry sclerophyll eucalypt forest was determined. This required destructive sampling of three major species of trees and development of a water soakage method for the measurement of water holding capacity of all above ground components. The influence of antecedent weather conditions on canopy storage capacity was assessed. It was shown that the interactive effects of leaf area and water holding capacity of all tree components were such that the estimated canopy storage capacity (0-39 mm) was likely to change little except under extreme conditions of drought and rainfall. The effect of species composition on forest canopy storage capacity is also presented. The wetting processes are described and compared with those discussed in other studies. They are shown to be relevant to the estimation of canopy storage capacity in almost any forest.  相似文献   

5.
This study of litter decomposition was part of an extensive project examining the partitioning of rainfall, the associated chemistry, and litterfall in a dry sclerophyll eucalypt forest and a Pinus radiata plantation in southeastern Australia. The eucalypt species studied were Eucalyptus rossii, E. mannifera and E. dives. The components tested were Pinus radiata needles, leaves of the three eucalypt species, and the bark of E. rossii and E. mannifera. During the first 16 weeks of the decomposition experiment there was a rapid decrease in the concentrations of potassium, magnesium, sodium and phosphorus; this was attributed to leaching. During this period, concentrations of nitrogen and calcium increased for most components. After this period, decomposition became the dominant process, during which the concentrations of most elements increased. By the end of the experiment there was, compared with the initial values, a marked reduction in concentrations of sodium, magnesium and potassium for all eucalypt and pine litter. Calcium concentrations increased through time, with eucalypt bark showing a mid‐period decline. Phosphorus concentrations decreased for the eucalypt leaves but increased substantially for the pine needles and the eucalypt bark. For all components of both the eucalypts and pines, total nitrogen concentrations rose consistently throughout the decomposition period. This was attributed to the formation of nitrogen‐substituted lignin, which was more resistant to decomposition than the other nitrogen‐containing compounds, as well as some nitrogen being stored in the micro‐organisms responsible for decomposition. Because of loss of fragmented litter from the litter bags after 16 weeks, the weight changes could not be confidently measured after this period. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The magnitude of soil water repellency in a dry sclerophyll eucalypt forest was measured periodically over four years. The varying responses from a range of sites within the forest are discussed and the effect of amount and frequency of rainfall is shown. It was found that some weeks of consistently wet weather were required for water repellency breakdown, and a frequency of rainfall much greater than normal in the study area for it to remain broken down. Even after an extended period of breakdown, it was found that repellency can be reestablished after one week of hot dry weather. Laboratory tests were used to examine the major repellency processes; three were identified and the relative importance of each considered in the context of the field study. The relative influence of each depended on the physical and chemical characteristics of the sites. The repellent soil samples were more repellent to water of throughfall origin, and even more repellent to stemflow than to distilled water. The repellency response also varied with the type of vegetative cover present. The influence of these phenomena on the preservation of water repellency and the relevance of repellency in macropore infiltration processes are discussed.  相似文献   

7.
Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Although these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species‐rich forests is not well known. Many hydrological applications, however, require at least a rough estimate of stemflow volumes based on the characteristics of a forest stand. The need for robust predictions of stemflow motivated us to investigate the relationships between tree characteristics and stemflow volumes in a species‐rich tropical forest located in central Panama. Based on a sampling setup consisting of ten rainfall collectors, 300 throughfall samplers and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. Firstly, stemflow represents a minor hydrological component in the studied 1‐ha forest patch (1.0% of cumulated rainfall). Secondly, in the studied species‐rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Thirdly, predicting stemflow in species‐rich forests based on tree parameters is a difficult task. Although our best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species‐rich forests corroborates this finding. Based on these results and considering that for most hydrological applications, stemflow is only one parameter among others to estimate, we advocate using the base model, i.e. the mean of the stemflow data, to quantify stemflow volumes for a given study area. Studies in species‐rich forests that wish to obtain predictions of stemflow based on tree parameters probably need to conduct a much more extensive sampling than currently implemented by most studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall samples were collected from several hundred rainfall events. Up to nine samples per event were collected from sites 3–500 m apart. They differed substantially in both concentration and composition, even though great care was taken to wash all collectors beforehand. Dryfall, storage and analytical procedures could not explain the variation. When data for rainfall events of similar size (but very different cation inputs) were examined, the major differences were associated with the prevailing wind direction. Events leading to high concentrations were associated with easterly winds and showed the influence of a marine source. Chemical concentration and composition were not altered by the occurrence of a drought year followed by a very wet year. The mean pH was 5·3 and ranged from 4·6 to 5·8. For a given event, a difference of 0·5 often occurred between collection sites. Regular seasonal variations in the concentration of NO3-N and the NO3/NH4 ratio occurred, with the ratio being higher in summer due primarily to bush fires. Organic nitrogen comprised 14% of total nitrogen.  相似文献   

10.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   

11.
ABSTRACT

Trees concentrate rainfall to near-stem soils via stemflow. When canopy structures are organized appropriately, stemflow can even induce preferential flow through soils, transporting nutrients to biogeochemically active areas. Bark structure significantly affects stemflow, yet bark-stemflow studies are primarily qualitative. We used a LaserBark to compute bark microrelief (MR), ridge-to-furrow amplitude (R) and slope (S) metrics per American Society of Mechanical Engineering standards (ASME-B46.1–2009) for two morphologically contrasting species (Fagus sylvatica L. (European beech), Quercus robur L. (pendunculate oak)) under storm conditions with strong bark water storage capacity (BWSC) influence in central Germany. Smaller R and S for F. sylvatica significantly lowered BWSC, which strongly and inversely correlated to maximum funnelling ratios and permitted stemflow generation at lower rain magnitudes. Larger R and S values in Q. robur reduced funnelling, diminishing stemflow drainage for larger storms. Quercus robur funnelling and stemflow was more reliant on intermediate rain intensities and intermittency to maintain bark channel-dependent drainage pathways. Shelter provided by Q. robur’s ridged bark also appears to protect entrained water, lengthening mean intrastorm dry periods necessary to affect stemflow. Storm conditions where BWSC plays a major role in stemflow accounted for much of 2013’s rainfall at the nearest meteorological station (Wulferstedt).
Editor M.C. Acreman; Associate editor not assigned  相似文献   

12.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

13.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Stemflow was evaluated in a water balance and its contribution to groundwater recharge determined. Gross precipitation, throughfall and stemflow were measured for one year in a pine forest (Tsukuba, Japan) to determine each component of the water balance in the forest. Groundwater recharge rates by stemflow and throughfall were calculated from a mass balance method using chloride in subsurface waters. The stemflow in the water balance was relatively small when estimated as a value per canopy projected area of the tree in the forest. However, the results for the mass balance of chloride in subsurface waters indicated that it was impossible to disregard the stemflow in determining groundwater recharge. Although the ratio of stemflow to the net precipitation was small in the water balance, the effect of stemflow on groundwater recharge was relatively large.  相似文献   

15.
The rainfall received by a small plot of tropical deciduous forest on sand dunes in Veracruz, Mexico, was partitioned into stemflow and throughfall components to determine whether funnelling by stemflow could reduce soil leaching by transmitting large volumes of water through vertical soil pathways beneath each stem. Although soil infiltration capacities were high, only a very small proportion of incoming rainfall was funnelled by canopy stems. This is attributed to the widely-branched morphology of mature trees. Smaller trees and shrubs were more effective funnellers of rainfall, and a crude estimate of the magnitude of stemflow in the understorey stratum in one rain event suggested a contribution approximately ten times that of canopy stemflow. However, even if augmented by the understorey stratum in this way, total stemflow is unlikely to have exceeded 10 per cent of gross precipitation, implying that it does not represent an important leaching-avoidance mechanism in this forest.  相似文献   

16.
Stemflow of xerophytic shrubs was monitored on event basis within a revegetated sand dune. Quantity of stemflow showed a clear species‐specific dependence in combination with the rainfall characteristics. Results obtained revealed that for ovate‐leaved C. korshinskii with an inverted cone‐shaped canopy and smooth bark, the quantity of stemflow in depth accounted for 7.2% of the individual gross rainfall, while it was 2.0% for needle‐leaved A. ordosica with a cone‐shaped canopy and coarse bark. There were significant positive linear relationships between stemflow and individual gross rainfall and rainfall intensity for the two shrubs. An individual gross rainfall of 1.4 and 1.8 mm was necessary for stemflow generation for C. korshinskii and A. ordosica, respectively. Multiple regression analysis showed that the abiotic and biotic variables including the individual gross rainfall, mean windspeed (WS), canopy height, branch length, and canopy volume have significant influence on stemflow for C. korshinskii, whereas for A. ordosica, the notable influencing variables were individual gross rainfall, stem diameter, and leaf area index. Generally, WS has less effect on stemflow than that of rainfall for A. ordosica. The correlation relationship between individual gross rainfall and funneling ratio showed that the funneling ratio attains its peak when the gross rainfall is 13 and 16 mm for C. korshinskii and A. ordosica, respectively, implying that the canopy morphology emerged as determining factors on funneling ratio decrease when the individual gross rainfall exceeds these values. In comparison, higher WS increased the funneling ratio remarkably for C. korshinskii than A. ordosica due partly to the greater branch length and canopy projection area in C. korshinskii. Funneling ratio can be used as an integrated variable for the effects of canopy morphology and rainfall characteristics on stemflow. The implication of stemflow on water balance and its contribution to sustain the shrubs and the revegetation efforts was discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Litterfall was measured in a dry schlerophyll eucalypt forest and a nearby Pinus radiata plantation of similar tree density and basal area near Canberra in south-eastern Australia. Total annual litterfall for the eucalypts was 329 g m−2, compared with 180 g m−2 for the pines, with the bark component being 52 g m−2 for eucalypts and zero for pines. Barkfall did not occur for the eucalypts during the drought of 1982–1983 but complete bark shedding occurred during the subsequent very wet year when barkfall was 177 g m−2 for Eucalyptus rossii and 146 g m−2 for Eucalyptus mannifera (9·3 and 7·6 g m−2 of basal area, respectively). Barkfall of E. rossii responded to rainfall in the period autumn to early summer, whereas E. mannifera responded to summer rainfall. In the eucalypt forest floor-litter was stratified into a surface layer where the components were substantially intact, and a cohesive layer where the components were fragmented and bound together by fungal hyphae. The amount and residence times of loose and cohesive floor-litter were 1056 g m−2 and 3·2 years, respectively, for the loose litter layer; and 1164 g m−2 and 3·5 years for the cohesive layer. The litter biomass represented 17% of the estimated total above-ground biomass of 127 tonnes ha−1. A previous study showed roots to be 25% of total biomass, suggesting a total biomass of 167 tonnes ha−1. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

19.
Large‐scale exotic pine plantations have been developed for timber production in subtropical Australia. Few studies investigate the spatial variability of both throughfall and stemflow in such managed pine plantations despite their acknowledged effects on the heterogeneity of hydrological and biochemical processes of forested ecosystems. To examine the spatial variability of rainfall under a 12‐year‐old pine plantation in a subtropical coastal area of Australia, we observed gross rainfall, throughfall and stemflow over a 1‐year period. Our results show that the spatial variability of gross rainfall within a 50 m × 50 m plot is minimal. Throughfall is significantly different among three tree zones (midway between rows, west and east side of trunks), particularly for rainfall <50 mm, with the highest throughfall on the east side of the tree trunks (sum = 85% of gross rainfall) and the lowest in the midway between tree rows (sum = 68% of gross rainfall). These spatial patterns persist among 84% of recorded rainfall events. Spatial variability and time stability of throughfall are better explained by canopy interception of the inclined rainfall resulting from the prevailing easterly wind direction throughout the experiment. The annual stemflow is different among individual sample trees, which is mainly ascribed to the difference in tree size (e.g. projected canopy area and stem diameter). The outcomes of this study would help future investigators better design appropriate sampling strategies in these pine plantations under similar climate conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A primary model for evaluating the effect of stemflow on groundwater recharge has been developed. The model, a cylindrical infiltration model (CI model), is based on the infiltration area of stemflow-induced water instead of canopy projected area for determining the stemflow inputs to the soil surface. The estimated ratio of recharge rate by stemflow to the total recharge rate determined with this model agrees closely with values obtained from the mass balance of chloride in subsurface waters. This primary model is considered to be useful for estimating the effect of stemflow on groundwater recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号