首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by sur-face wave velocity tomography and non-linear inversion.Maps of the Moho depth, of the thickness of the lithos-phere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, iden-tified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the prmctpat recent votca-noes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria, a lithospheric dou-bling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenos-phere properties delineate a differentiation between the northern and the southern sectors of the Adriatic Sea,likely attesting the fragmentation of Adria.  相似文献   

2.
汪洋  程素华 《地学前缘》2013,20(1):182-189
根据均衡原理制约的地热计算得到中国西部及邻区岩石圈的温度分布状态,以40、100km和莫霍面深度等温线图的形式表示,同时计算了以1 350℃等温面深度表示的中国西部及邻区的热岩石圈厚度。结果显示:中国大陆西北部地区、哈萨克斯坦东部地区以及上扬子地块、蒙古中西部地区和青藏高原中部的深部地温较低,青藏高原北部、东部以及天山褶皱带中部的深部地温高。在中国西部及邻区范围内,岩石圈厚度在180km以上的地区包括准噶尔盆地,塔里木盆地核心部位,西藏东部、中部以及祁连山地区。上扬子地块(四川盆地)岩石圈厚度为160km或更多,蒙古中西部地区以及哈萨克斯坦东部地区的岩石圈厚度为140~180km。青藏高原东部边缘和藏北地区以及天山中部吉尔吉斯伊塞克湖地区的岩石圈厚度较薄(<140km)。地热计算得到的结果与地震层析成像研究结果之间相互吻合。采用湿的上地幔流变学模型的计算结果表明,青藏高原及其东部边缘、天山褶皱带中部和蒙古中西部地区的岩石圈流变学强度模型为"奶油蛋糕(crèmebrlée)"型,其强度剖面显示强地壳而弱地幔的特点;上扬子地块(四川盆地)、准噶尔盆地、塔里木盆地和哈萨克斯坦东部地区岩石圈流变学强度模型为"果冻三明治(jelly sandwich)"型。  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

4.
Wim Spakman 《地学学报》1990,2(6):542-553
Results from delay time tomography of the European-Mediterranean upper mantle are discussed and where possible interpreted in terms of geodynamic processes. Slab-like positive velocity anomalies of which the locations correlate well with deeper seismicity are found beneath Spain, the Tyrrhenian basin, and the Aegean. These structures are interpreted as images of subducted slabs. Large aseismic regions with positive velocity anomalies are found beneath the Western Mediterranean, Italy, the Alps, Dinarides, the Pannonian basin, northern Greece, and the Aegean. These anomalies can also be linked to subducted lithosphere. From the anomaly patterns it is deduced that subduction occurred below the Western Mediterranean and along both sides of the Adriatic micro-plate. Beneath the Dinarides and northern Greece the velocity structures suggest detachment of the slab from the surface.  相似文献   

5.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

6.
为了探讨东海陆架盆地西湖凹陷岩石圈热流变性质,本文以实测地温数据为依据,模拟西湖凹陷岩石圈热结构,在此基础上,应用流变学原理模拟确定西湖凹陷岩石圈流变性质。结果表明,西湖凹陷岩石圈为一个冷地壳-热地幔、强地壳-弱地幔的"奶油蛋糕"型岩石圈。西湖凹陷平均地表热流密度为71 m W/m~2,地幔热流密度为40~65 m W/m~2,对地表热流密度的贡献度达73%~79%,地表热流受地幔热流控制,莫霍面温度在700℃左右,热岩石圈平均厚度为66 km。西湖凹陷岩石圈流变分层明显,上、中地壳基本为脆性层,下地壳和岩石圈上地幔为韧性层,岩石圈总流变强度平均约为2.65′10~(12) N/m,其中地壳流变强度为2.12′10~(12) N/m,地幔流变强度为5.29′10~(11) N/m,有效弹性厚度为11.7~14.5 km,地壳的流变性质控制了岩石圈的流变行为。此外,西湖凹陷岩石圈总强度较低,在构造应力作用下易于变形,且存在壳幔解耦现象。西湖凹陷岩石圈热状态及流变性质决定了西湖凹陷东部地区主要以浅部地壳的断层滑动和地层破裂来调节深部的构造应力。  相似文献   

7.
周华伟  林清良 《地学前缘》2002,9(4):285-292
文中介绍有关西藏—喜马拉雅碰撞带的一项地震层析成像研究。根据一个用天然地震数据产生的全球波速模型 ,印度板块有可能以近水平状俯冲于整个西藏高原之下至 16 5~ 2 6 0km深度。西藏岩石圈具有低波速地壳和高波速下岩石圈 (75~ 12 0km深 )。在 12 0~ 16 5km深度范围 ,西藏岩石圈与俯冲的印度板块之间有一层低速软流圈物质。高原中部从地表到 310km深处有一低速体 ,说明地幔物质有可能穿过俯冲板块的脆弱部位上隆。这些结果以及野外实测的地壳缩短值说明高原的抬升得助于印度板块的近水平俯冲。我们推论俯冲印度板块的升温上浮以及上覆软流层的存在是造成西藏高原高海拔抬升以及内部地表仍相对平坦的主要原因。2 0 0 1年 1月 2 6日在印度西部发生的毁灭性大地震有可能是俯冲应力在印度板块后缘薄弱处引发的岩石圈大断裂。  相似文献   

8.
Regional three-dimensional inversions of teleseismic P-wave travel time residuals recorded by high-frequency regional and local seismic networks operating along the Western Alps and surrounding regions were carried out and lithosphere and upper mantle P-wave velocity models down to 300 km were obtained.

Residuals of more than 500 teleseismic events, recorded by 98 fixed and temporary seismic stations, have been inverted.

The comparison between real residuals and the ones obtained from tomographic model indicates that the method is able to solve the feature of the regional heterogeneities.

Where the resolution is good, coherent lithospheric and upper mantle structures are imaged. In the shallower layers, high- and low-velocity anomalies follow the structural behaviour of the Alpine-Apenninic chains showing the existence of very strong velocity contrasts. In the deepest layers, velocity contrast decreases however two deep-seated high-velocity structures are observed. The most extended in depth and approximately trending NE-SW has been interpreted as a wreck of the oldest subduction responsible of the Alpine orogenesis. The second one, connected to the northwestern sector of the Apenninic chain, appears to vanish at depths greater than 180 km and is probably due to still active Apenninic roots.

Cross-sections depict the spatial trend of perturbations and in particular outline the sub-vertical character of the Alpine and Apenninic anomalies. Under the Ligurian Sea, the 3-D inversion confirms the uplift of the asthenosphere in agreement with the tectonic evolution of the basin.  相似文献   


9.
李涛  王宗秀 《地学前缘》2005,12(3):125-136
与洋陆俯冲关系不同,在板内汇聚过程中,大陆岩石圈固有的多圈层、多界面结构的特点,使得地块的俯冲变形伴有多圈层顺层拆离解耦的行为,使变形结构复杂化。虽然多圈层界面拆离解耦所引发的地震点群空间分布不像洋陆俯冲关系那么规则完美,但是依据地震群与破裂位置、破裂与岩石圈分层力学特性的依次控制关系,运用深度/频次、平面密度等统计方法,再以各种地球物理实测手段得到的岩石圈结构构造数据作为界面标定依据,还是能够得出诸如拆离解耦的界面深度、界面归属和区域层间变形范围等重要的几何学信息,这些变形几何学、运动学数据是构建大陆岩石圈板内汇聚造山特别是盆山耦合模式时的关键性的依据。文中通过对塔里木盆地及周缘造山带的相关研究,在岩石圈层拆离解耦状态及其与盆山构造格局之间的关系方面得出以下几点认识:(1)塔里木盆地及周缘造山带岩石圈的主拆离解耦层均发育于中地壳,但随各区中地壳的具体深度位置不同而有所差别;(2)塔西南/西昆仑盆山构造耦合关系是构建于岩石圈尺度上的,塔北/南天山盆山耦合关系是构建于地壳尺度上的;(3)地震活动的密集程度及密集带的展布与天山的变形强度、隆升状态和地貌阶段类型的变化规律有着近乎完美的精确匹配关系;(4)塔北/南天山和塔西南/西昆仑对应于岩石圈的强拆离解耦区,塔东北/东天山和塔东南/阿尔金山之间无耦合关系,其边缘带对应于岩石圈弱拆离解耦和无拆离解耦区;(5)塔里木盆地总体上的弱变形状态与其岩石圈弱或未拆离解耦类型占据总面积90%的情形相适应;(6)塔里木地块以驱动、阻挡约束、平移滚筒约束和克拉通过渡等多重“身份”存在于相邻单元“包围”的力学环境中。  相似文献   

10.
We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and eastward subduction of Burma microplate.  相似文献   

11.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

12.
中国岩石圈的基本特征   总被引:11,自引:2,他引:9  
李廷栋 《地学前缘》2010,17(3):1-13
中国及邻区岩石圈结构构造十分复杂,并具有若干明显的特点:中国大陆地壳西厚东薄、南厚北薄,青藏高原地壳平均厚度为60~65 km,最厚达80 km;东部地区一般为30~35 km,南中国海中央海盆平均只有5 km;中国大陆地壳平均厚度为476 km,大大超过全球地壳392 km的平均厚度。中国大陆及邻区岩石圈亦呈西厚东薄、南厚北薄的变化趋势,青藏高原及西北地区岩石圈平均厚度为165 km,塔里木盆地中东部、帕米尔与昌都地区岩石圈厚度可达180~200 km。大兴安岭-太行山-武陵山以东,包括边缘海为岩石圈减薄区,厚度为50~85 km。西部岩石圈、软流圈“层状结构”明显,反映了板块碰撞汇聚的动力学环境;东部岩石圈、软流圈呈“块状镶嵌结构”,岩石圈薄,软流圈厚,反映了地壳拉张、软流圈物质上涌的特点,并在东亚及西太平洋地区85~250 km深处形成一巨型低速异常体。中国东部上、下地壳及地壳、岩石圈地幔之间普遍存在“上老下新”年龄结构。  相似文献   

13.
Thermal State and Strength of the Lithosphere Beneath the Chinese Mainland   总被引:1,自引:0,他引:1  
The temperature distributions of the lithosphere underneath the mainland of China were estimated by applying local isostatic equilibrium-constrained geothermal calculations. Maps of the lateral temperature variation at depths of 40, 70, and 100 km are presented for the whole Chinese continent, with the thermal thickness of the lithosphere is calculated. Lithospheric roots of 160–200 km thickness underlie Tarim and the Upper Yangtze platform, but are absent beneath the entire Sino-Korean platform. In general, the Tibetan plateau and fold belts to the north have warm but thick lithospheres, whereas thinner thermal lithospheres have been identified in northern Tibet and central Tian Shan around Issyk-Kul Lake. The warm and soft lithosphere in the Tibetan plateau and Tian Shan are caused by uniform north–south shortening, which may represent a snapshot of the early stage of convective thinning of the convergent lithosphere. However, the lithospheric thinning beneath northeastern China might be related to volatile infiltration by dehydration of the deeply subducting Pacific slab during the Cenozoic. Dry and wet upper mantle rheology display “jelly sandwich” and “crème br?lée” pictures, respectively, demonstrating the mechanical behaviour of the Chinese lithosphere outside the Tibetan plateau. Considering a more geologically evident wet-mantle rheology, the “crème br?lée” model can approximate the lithospheric rheology for the most earthquake-prone regions on the Chinese mainland.  相似文献   

14.
This work is a part of the TOR1 project (1996–1997) and is devoted to determining the lithospheric structure across the Sorgenfrei–Tornquist Zone in Northern Europe. For the first time in Europe, a very dense seismic broadband array has offered the possibility of determining very sharp lateral variations in the structure of the lithosphere at small scales using surface wave analysis. We measure phase velocities for Rayleigh waves with periods ranging between 10 and 100 s, both within arrays with apertures of 40–50 km (small compared to the wavelength), and along long profiles of at least 100 km. Dispersion curves are then inverted and shear-wave velocity models down to the depth of 200 km are proposed. We show that the Sorgenfrei–Tornquist Zone is a major tectonic feature within the whole lithosphere. North–east of this feature, in Sweden beneath the Baltic Shield, no lithosphere–asthenosphere boundary is observed to exist to depths of 200 km. South–west of the Sorgenfrei–Tornquist Zone, beneath Denmark, we find a lithospheric thickness of 120±20 km. The transition across the Sorgenfrei–Tornquist Zone is sharp and determined to be very steeply dipping to the south–west. We also demonstrate the existence of a sharp discontinuity between the lithospheres beneath Denmark (120±20 km thick) and beneath Germany (characterized by thicknesses of 50±10 km in the northernmost part and 100±20 km in the southwest). This discontinuity is most likely related to the Trans-European Fault at the surface.  相似文献   

15.
详细的深部结构信息是深入认识华北克拉通显生宙改造和破坏的重要依据。基于密集流动地震台阵和固定台网记录的远震P波和S波接收函数资料,获得了跨越华北克拉通东、中、西部的3条剖面的岩石圈和上地幔结构图像,揭示了克拉通不同区域深部结构特征的显著差异。与东部普遍减薄的岩石圈(60~100km)相比,中、西部表现出厚、薄岩石圈共存的强烈横向非均匀性,既在稳定的鄂尔多斯盆地之下保留着厚达200km的岩石圈,又在新生代银川—河套和陕西—山西裂陷区存在厚度<100km的薄岩石圈,差异最大的厚、薄岩石圈仅相距约200km。岩石圈厚度在东、中部边界附近的约100km横向范围内显示出20~40km的迅速增加。岩石圈厚度的快速变化与地表地形从东向西的突然改变以及南北重力梯度带的位置大致吻合,并对应于地壳结构、地幔转换带厚度和660km间断面结构的快速变化。这种从地表到上地幔底部深、浅结构的耦合变化特征表明,东西两侧区域在显生宙可能经历了不同的岩石圈构造演化和深部地幔动力学过程。克拉通东部薄的地壳、岩石圈和厚的地幔转换带以及复杂的660km间断面结构可能与中生代以来太平洋板块深俯冲及其相关过程对这一地区岩石圈的改造和破坏有关;而中、西部存在显著减薄的岩石圈这一观测结果,并结合岩石、地球化学资料表明,克拉通岩石圈改造和减薄不仅发生在东部,而且可能影响了包括中、西部在内的更广泛的区域。岩石圈薄于100km的中、西部裂陷区可能与先前存在于岩石圈中的局部构造薄弱带相联系。这些古老岩石圈薄弱带可能经历了后期构造事件的多次改造,并在新生代印度—欧亚陆陆碰撞过程中被进一步弱化、减薄,最终造成地表裂陷。另一方面,中、西部总体较厚的地壳、岩石圈以及正常偏薄的地幔转换带表明,同太平洋深俯冲对东部的作用相比,包括印度—欧亚大陆碰撞在内的多期热-构造事件对该地区的构造演化影响相对较弱,不足以大范围改造和破坏高强度的克拉通岩石圈地幔根,从而造成了该地区现今岩石圈结构的高度横向不均匀。  相似文献   

16.
天然地震S波和大地电磁测深给出了两种不同的藏北岩石圈厚度模型,两种测量结果的地质含义至今还不十分清楚。通过对地表高程与地壳厚度回归关系的研究,以回归直线的斜率和截距作为地壳和岩石圈地幔平均密度取值的约束,并考虑相变因素对软流圈密度的影响,采用均衡理论对藏北岩石圈厚度进行了计算。计算结果表明,在可能的软流圈温度取值范围内藏北岩石圈的平均厚度约为106~120km,地壳增厚前的岩石圈平均厚度约80km。藏北新生代火山作用和岩浆起源-分凝深度分析表明,藏北现今岩石圈厚度主要受金云母脱水深度所控制。增厚前岩石圈地幔底部温度高于橄榄岩湿固相线温度,并受闪石和金云母高压脱水作用的影响。加厚岩石圈地幔因其底部不断发生脱水低程度熔融而进入软流圈小尺度对流体系,使岩石圈加厚过程中伴随有底部的脉动减薄作用。  相似文献   

17.
中国东部岩石圈热状态与流变学强度特征   总被引:10,自引:1,他引:9  
根据均衡原理制约的地热计算得到中国东部岩石圈的温度分布状态,以40、70、100km和莫霍面深度等温线图以及600°C、1100°C等温面深度的形式表示.同时计算了以1350°C等温面深度表示的中国东部的热岩石圈厚度.结果显示:在扬子克拉通西部四川盆地之下存在160~200km厚的岩石圈根,但在整个华北克拉通之下缺失岩...  相似文献   

18.
To better understand the lithosphere mantle collision tectonics between the India plate and Asia plate, we determine three dimensional P wave velocity structure beneath western Tibet using 27,439 arrival times from 2,174 teleseismic events recorded by 182 stations of Hi-CLIMB Project and 16 stations in the north of Hi-CLMB. Our tomographic images show the velocity structure significantly difference beneath northern and southern Qiangtang, which can further prove that the Longmu Co-Shuanghu ophiolitic belt is a significant tectonic boundary fault zone. There are two prominent high velocity anomalies and two prominent low velocity anomalies in our images. One obvious high velocity anomalies subduct beneath the Tibet at the long distance near 34°N, whereas it is broke off by an obvious low velocity anomaly under the IYS. We interpret them as northward subducting Indian lithosphere mantle and the low velocity anomanly under IYS likely reflects mantle material upwelling triggered by tearing of the northward subduction Indian lithosphere. The other prominent high velocity anomaly was imaged at a depth from 50 km to 200 km horizontal and up to the northern Qiangtang with its southern edge extending to about 34°N through Hoh Xil block. We infer it as the southward subducting Asia lithosphere mantle. The other widely low velocity anomaly beneath the Qiangtang block lies in the gap between the frontier of India plate and Asia plate, where is the channel of mantle material upwelling.  相似文献   

19.
《Gondwana Research》2014,25(3-4):849-864
We have imaged the lithospheric structure beneath the central and western North China Craton (NCC) with Rayleigh wave tomography. The Rayleigh waveforms of 100 teleseismic events recorded by 208 broadband stations are used to yield high-resolution phase velocity maps at 13 periods from 20 s to 143 s. A 3-D S-wave velocity model is constructed based on the phase velocity maps. Our S-wave velocity model is broadly consistent with the results of previous tomography studies, but shows more detailed variations within the lithosphere. The Trans-North China Orogen (TNCO) is generally characterized by low-velocity anomalies but exhibits great heterogeneities. Two major low-velocity zones (LVZs) are observed in the north and south, respectively. The northern LVZ laterally coincides with sites of Cenozoic magmatism and extends to depths greater than 200 km. We propose that a small-scale mantle upwelling is present, confined to the north of the TNCO. A high-velocity patch in the uppermost mantle is also observed between the two LVZs adjacent to the narrow transtensional zone of the Cenozoic Shanxi–Shaanxi Rift (SSR). We interpret this as the remnant of a cratonic mantle root. The Ordos Block in the western NCC is associated with high-velocity anomalies, similarly reflecting the existence of cratonic mantle root, but a discernible low-velocity layer is observed at depths of 100–150 km in this location. We interpret that this mid-lithospheric structure was probably formed by metasomatic processes during the early formation of the NCC. Based on the observations from our S-wave velocity model, we conclude that the current highly heterogeneous lithospheric structure beneath the TNCO is the result of multiphase reworking of pre-existing mechanically weak zones since the amalgamation of the craton. The latest Cenozoic lithospheric reworking is dominated by the far-field effects of both Pacific plate subduction and the India–Eurasia collision.  相似文献   

20.
Seismic imaging of lithospheric discontinuities and continental evolution   总被引:1,自引:0,他引:1  
M. G. Bostock 《Lithos》1999,48(1-4):1-16
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (60 km depth) and L (200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号