首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
有机碳氮是影响陆地生态系统的重要因子,保持并提高土壤碳氮储量,是稳定生态系统生产力的关键.以南京紫金山土壤为研究对象,依照海拔高度进行采样,对比分析了土壤有机碳氮的变化规律.研究结果表明:紫金山土壤有机碳氮受地表植被的影响比较大,混交林>林地>草地,土壤有机碳氮总量随海拔的升高呈现上升趋势,土壤碳氮比高达34~45,且随海拔升高呈下降趋势.相关分析表明,紫金山土壤有机碳与全氮质量分数呈显著正相关关系,由此说明氮素主要以有机氮的形式存在于有机质中.  相似文献   

2.
Soil carbon densities and pools have been estimated for Russia. The estimate was derived from the generalized version of the soil map of the country at the scale 1:2.5 million (Fridland, 1988), which has been designated a countrywide standard. At the pre-developed stage, the soils in Russia captured about 373 Pg of organic and 75 Pg of inorganic C in the 0–2.0 m layer. Organic C is intensively accumulated in the topsoil. Inorganic C tends to concentrate in deep soils and is of non-pedogenic origin. The mass of organic matter is captured in the tundra, pre-tundra, and the northern and middle taiga of Russia. Anthropogenic impacts have led to a loss of about 5 Pg of C in the 0–1.0 m layer, which is some 2% of the total C content in Russian soils. From this amount, the topsoil of cropland has lost 2.6 Pg (20% of the initial C content in soils), including 0.4 Pg caused by erosion. The deep soil (0.3–1.0 m) of cropland has lost 1 Pg. Some 0.5 Pg of C are removed from the topsoil (7%) and 0.6 Pg by the deep soil from pastures. Forest soils have roughly lost about 0.3 Pg of C due to the decline of C input into soils caused by various disturbances. The predicted climate warming is expected to enhance the C sequestration by soil in Russia.  相似文献   

3.
在气候变化背景下,农田净生态系统生产力变化趋势和影响因素不确定性大,为有效评估农田生态系统的固碳潜力,利用2005-2020年东北雨养春玉米田涡动相关数据分析该区域碳通量年际变化趋势及其气象、土壤和生物影响因素。结果表明:东北雨养春玉米田净生态系统生产力为272±109g·m^(-2)·a^(-1),且无显著变化趋势;与生态系统呼吸相比,净生态系统生产力年际变化主要受总生态系统生产力影响。气象因素的降水量和生物因素的作物水分利用效率是净生态系统生产力年际变化的主要影响因素,影响权重分别为28.4%和31.4%;气象、土壤和生物因素对总生态系统生产力年际变化的影响权重分别为61.0%,43.8%和62.8%;土壤因素和生物因素是生态系统呼吸年际变化的主要影响因素,且土壤因素对生态系统呼吸年际变化的影响权重(39.3%)大于生物因素(29.2%)。在气候变暖背景下,东北雨养春玉米田对水分更为敏感,同时日照和温度通过影响饱和水汽压差和土壤湿度间接影响净生态系统生产力的年际变化。  相似文献   

4.
The aim of this study was to generate a land productivity dynamics (LPD) map of a degraded catchment located in sub-humid terrestrial ecosystem via a land degradation assessment using three indicators, namely land use and land cover, land productivity, and soil organic carbon density. The study was carried out in two adjacent microcatchments located in Gediz River Basin and conducted between 2001 and 2015. For this purpose, Landsat satellite images were used to determine changing of land use and land cover and vegetation density. In addition, 319 soil samples were collected from surface and subsurface soil depths to detect soil organic carbon density of the study area in May 2015. According to the study results, in more than 23% of the catchments’ area of approx. 3896 ha, land productivity is observed to decline while about 24% shows early signs of decline level. Some of these areas used under agricultural cropping, overgrazed pasture, and artificial areas showed evidence of soil erosion problem. Only very small area of the catchment shows stable and increasing land productivity dynamics trend during the 14-year period.  相似文献   

5.
Climate changes observed in recent decades are analyzed, and the respective climate-related tendencies of changes in heat supply, moistening, and productivity of the agrosphere that determine the natural resourse of potential Russia are determined. The grain crop yield trends are used additionally as climate change indicators. It is shown that climate changes observed in the last 30 years promote the increase in potential agriculture productivity in most of the Russian Federation, where not less than 85% of agricultural products are produced. At the same time, the increase in climate aridity is observed in several regions of Siberia and Chernozem Center, which results in a reduced productivity of agriculture.  相似文献   

6.
Incorporating organic soil into a global climate model   总被引:3,自引:1,他引:2  
Organic matter significantly alters a soil’s thermal and hydraulic properties but is not typically included in land-surface schemes used in global climate models. This omission has consequences for ground thermal and moisture regimes, particularly in the high-latitudes where soil carbon content is generally high. Global soil carbon data is used to build a geographically distributed, profiled soil carbon density dataset for the Community Land Model (CLM). CLM parameterizations for soil thermal and hydraulic properties are modified to accommodate both mineral and organic soil matter. Offline simulations including organic soil are characterized by cooler annual mean soil temperatures (up to ∼2.5°C cooler for regions of high soil carbon content). Cooling is strong in summer due to modulation of early and mid-summer soil heat flux. Winter temperatures are slightly warmer as organic soils do not cool as efficiently during fall and winter. High porosity and hydraulic conductivity of organic soil leads to a wetter soil column but with comparatively low surface layer saturation levels and correspondingly low soil evaporation. When CLM is coupled to the Community Atmosphere Model, the reduced latent heat flux drives deeper boundary layers, associated reductions in low cloud fraction, and warmer summer air temperatures in the Arctic. Lastly, the insulative properties of organic soil reduce interannual soil temperature variability, but only marginally. This result suggests that, although the mean soil temperature cooling will delay the simulated date at which frozen soil begins to thaw, organic matter may provide only limited insulation from surface warming.  相似文献   

7.
Impacts of extreme precipitation on tree plantation carbon cycle   总被引:2,自引:0,他引:2  
Extreme precipitation events are expected to increase in frequency and magnitude in future due to global warming, but relevant impacts on tree plantation ecosystem carbon cycle are unknown. In this study, we use an atmosphere–vegetation interaction model (AVIM2) to estimate the likely impacts of extreme precipitation events on carbon fluxes and carbon stocks of a tree plantation in south China. Our results indicate that shifting from moderate precipitation events to extreme precipitation events whilst keeping monthly precipitation unchanged could decrease the tree plantation carbon accumulation. Tree plantation net primary productivity, net ecosystem productivity, soil carbon stock and vegetation carbon stock could decrease by 4.2, 28, 4.3 and 1.4 % during the studying period of 1962–2004, respectively. Though reductions in net primary productivity and net ecosystem productivity are relatively smaller than their annual variations, our sensitivity test shows that the tree plantation carbon stock could decrease by 3.3 % if the assumed extreme precipitation regime lasts for 500 years. Observed and simulated gross primary productivity, ecosystem respiration and net ecosystem productivity have significant positive correlation with soil water content (SWC), especially the deep SWC. The mechanism for the extreme precipitation effect is that the increase in extreme precipitation events will cause SWC to decrease, consequently, reducing carbon fluxes and stocks.  相似文献   

8.
Increasing concentrations of carbon dioxide and other infrared absorbing gases are widely proposed as a mechanism for a global surface warming over the next several decades. Various methods have been used to anticipate the regional climatic changes which might result. In earlier papers Pittock has concluded that for Australia an increase in the extent of the summer rainfall regime is likely, with a decrease in winter rainfall. This is similar to a change which took place over much of Australia in the 1940's.In this paper a climate scenario, roughly corresponding to the climate which might be expected to occur by about the middle of the twenty-first century, has been used as the input into the Miami Model of net primary productivity due to Lieth. Results show that about half of Australia might experience productivity increases in excess of 20%. A small area in the extreme south-west of Australia shows a small decrease in productivity.The direct response of plants to higher ambient carbon dioxide concentrations, and many other possible effects such as changes in the incidence of plant diseases, pests, and soil erosion have not been assessed.Whether or not increasing carbon dioxide will lead to further climatic change in the next few decades, the results show that Australian primary productivity is quite sensitive to climatic variations within the range found in the historical records.  相似文献   

9.
Variations in the deep-sea carbon reservoir have been invoked to explain the observed atmospheric carbon dioxide (CO2) changes during glacial-interglacial cycles. In order to distinguish between the quantity of organic matter remineralized in the deep-sea and that permanently removed into sediments, we compared the bulk- and organic carbon-accumulation rates in Holocene and glacial sediments deposited below the oxygen minimum layer with total- and organic carbon fluxes to the deep Arabian Sea from continuous sediment trap deployments. This comparison shows that the mass of organic carbon remineralized at the sediment water interface is mainly a function of the bulk sediment flux. The oxygen consumed by the organic carbon remineralization is of the order of the observed oxygen deficiency of the modern deep Arabian Sea water. We use the evidence from the northern Indian Ocean to speculate on the possible effect of abiogenic mineral flux on the removal of organic carbon from upper layers of the world ocean to the deep-sea. We assume that if the bulk accumulation rate (not primary productivity) influences the flux of organic carbon (that is fixed from the atmosphere by marine organisms), then mineral matter flux will exert a significant control over atmospheric CO2 contents. Model calculations incorporating transient changes in global bulk flux, caused by natural or anthropogenic changes, show that significant proportions of the observed changes in atmospheric CO2 contents can be explained by this mechanism.This paper was presented at Clima Locarno 90, the International Conference on Past and Present Climate Dynamics: Reconstruction of Rates of Change, held in Locarno, Switzerland, September 24 to 28, 1991, organized by the Swiss National Climate Program — ProClim, with support from the Swiss Academy of Sciences. Guest editor for these papers is Dr. K. Kelts Offprint requests to: F Sirocko  相似文献   

10.
The use of conservation practices by agriculture in the United States will enhance soil organic carbon and potentially increase carbon sequestration. This, in turn, will decrease the net emission of carbon dioxide. A number of studies exist that calibrate the contribution of various individual, site-specific conservation practices on changes in soil organic carbon. There is a general absence, however, of a comprehensive effort to measure objectively the contribution of these practices including conservation tillage, the Conservation Reserve Program, and conservation buffer strips to an change in soil organic carbon. This paper fills that void. After recounting the evolution of the use of the various conservation practices, it is estimated that organic carbon in the soil in 1998 in the United States attributable to these practices was about 12.2 million Mt. By 2008, there will be an increase of about 25%. Given that there is a significant potential for conservation practices to lead to an increase in carbon sequestration, there are a number of policy options that can be pursued. These include education and technical assistance, financial assistance, research and development, land retirement, and regulation and taxes.  相似文献   

11.
Probable climate changes in Russia in the 21st century are considered based on the results of global climate simulations with an ensemble of coupled atmosphere-ocean CMIP3 models. The future changes in the surface air temperature, atmospheric pressure, cloud amount, atmospheric precipitation, snow cover, soil water content, and annual runoff in Russia and some of its regions in the early, middle, and late 21st century are analyzed using the A2 scenario of the greenhouse gas and aerosol emission. Future changes in the yearly highest and lowest surface air temperatures and in summer precipitation of high intensity are estimated for Russia. Possible oscillations of the Caspian Sea level associated with the expected global climate warming are estimated. In addition to the estimates of the ensemble mean changes in climatic characteristics, the information about standard deviations and statistical significance of the corresponding climate changes is given.  相似文献   

12.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

13.
基于通用陆面模式(Common Land Model, CoLM),首次评估了两套最新的全球土壤数据集GSDE(Global Soil Dataset for Earth System Model)和SG(SoilGrids)对全球陆面过程模拟的影响。比较分析了两套数据中砂粒、粘粒、砾石、有机碳的含量和容重这五个土壤属性在全球分布上的差异以及这种差异造成的对模式估计的土壤特性参数、水力热力变量的影响。结果表明,土壤特性参数在全球的空间分布主要受土壤粒径分布(砂粒、粉粒和粘粒)影响,同时也受砾石、有机碳和容重的影响。土壤资料对全球模拟结果影响主要体现在区域差异,对水文学变量的影响(Re最大达到±100%)大于对土壤热力学变量的影响(Re<±10%),对地表辐射变量的影响较小(Re<±5%)。其中,土壤体积含水量在加拿大中部及西北部、俄罗斯东南部及中西部和澳大利亚中部地区模拟结果相差较大,总径流在低纬地区模拟结果出现较大的差异,热力学变量在非洲北部、加拿大西北部以及俄罗斯中北部的差异稍大。将模拟的土壤体积含水量与站点观测相比,两套数据的表现接近,与站点观测相比都存在一定的偏差,但SG更接近观测,其中在Molly Caren站点(39°57′N,83°27′W)上SG相比GSDE整体提高约0.01~0.02。本研究表明,模式模拟结果受不同土壤数据集的影响显著,可优先考虑诸如SG较准确的土壤数据。土壤属性对陆面模拟的影响需进一步研究。  相似文献   

14.
We tested the sensitivity of a dynamic ecosystem model (LPJ-GUESS) to the representation of soil moisture and soil temperature and to uncertainties in the prediction of precipitation and air temperature. We linked the ecosystem model with an advanced hydrological model (JULES) and used its soil moisture and soil temperature as input into the ecosystem model. We analysed these sensitivities along a latitudinal gradient in northern Russia. Differences in soil temperature and soil moisture had only little influence on the vegetation carbon fluxes, whereas the soil carbon fluxes were very sensitive to the JULES soil estimations. The sensitivity changed with latitude, showing stronger influence in the more northern grid cell. The sensitivity of modelled responses of both soil carbon fluxes and vegetation carbon fluxes to uncertainties in soil temperature were high, as both soil and vegetation carbon fluxes were strongly impacted. In contrast, uncertainties in the estimation of the amount of precipitation had little influence on the soil or vegetation carbon fluxes. The high sensitivity of soil respiration to soil temperature and moisture suggests that we should strive for a better understanding and representation of soil processes in ecosystem models to improve the reliability of predictions of future ecosystem changes.  相似文献   

15.
Environmental change in grasslands: Assessment using models   总被引:7,自引:0,他引:7  
Modeling studies and observed data suggest that plant production, species distribution, disturbance regimes, grassland biome boundaries and secondary production (i.e., animal productivity) could be affected by potential changes in climate and by changes in land use practices. There are many studies in which computer models have been used to assess the impact of climate changes on grassland ecosystems. A global assessment of climate change impacts suggest that some grassland ecosystems will have higher plant production (humid temperate grasslands) while the production of extreme continental steppes (e.g., more arid regions of the temperate grasslands of North America and Eurasia) could be reduced substantially. All of the grassland systems studied are projected to lose soil carbon, with the greatest losses in the extreme continental grassland systems. There are large differences in the projected changes in plant production for some regions, while alterations in soil C are relatively similar over a range of climate change projections drawn from various General Circulation Models (GCM's). The potential impact of climatic change on cattle weight gains is unclear. The results of modeling studies also suggest that the direct impact of increased atmospheric CO2 on photosynthesis and water use in grasslands must be considered since these direct impacts could be as large as those due to climatic changes. In addition to its direct effects on photosynthesis and water use, elevated CO2 concentrations lower N content and reduce digestibility of the forage.  相似文献   

16.
Data on the rate of primary production, the rate of sinking and oxidation of organic detritus, the rate of regeneration of calcium carbonate, the average rate of vertical mixing, and the vertical profile of dissolved carbon are consistent with a model of the ocean in which the downward transport of carbon by the sinking and oxidation of organic particulate matter is balanced by upward hydrodynamic mixing of dissolved inorganic carbon. A time dependent version of this model is used to make rough estimates of the effect of periodic and impulsive changes in the rate of primary production on the atmospheric CO2 concentration. The computations suggest that a 1% decrease in marine biospheric productivity could result in a steady state increase of the atmospheric CO2 concentration of from 0.5 to 2.5% depending on the rate of vertical mixing. Large but short term fluctuations in productivity, such as a die-off of the marine biosphere followed by an exponential recovery period, are estimated to produce smaller perturbations.Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.  相似文献   

17.
冻融循环是影响土壤碳氮生物地球化学过程较为重要的因素。在全球变化背景下,冻融作用对冻土区土壤碳库稳定性及其关键生物地球化学过程影响研究是当前国际热点,尤其是冻融作用影响下多年冻土区泥炭地土壤有机碳矿化研究目前仍未明确。选取我国大兴安岭多年冻土区泥炭地表层(0~15 cm)和深层(15~30 cm)土壤,采用冻融试验及室内培养方法,探索分析了冻融作用影响下泥炭地土壤有机碳矿化特征,并从土壤活性碳和土壤酶活性角度阐述了影响机制。结果表明在短期的培养中,土壤有机碳矿化量在483~2836 mg/kg间波动,而冻融循环均显著降低了表层和深层土壤有机碳矿化量,并且对深层土壤有机碳的矿化抑制作用更为明显,高达76%。值得注意的是,冻融循环却明显促进了CH4的排放,尤其是表层土壤,高达145%。冻融循环作用也显著增加了土壤可溶性有机碳(DOC)含量,但却降低了土壤微生物量碳(MBC)以及土壤纤维素酶、淀粉酶和蔗糖酶活性。冻融作用下低的土壤酶活性以及相对低质量碳是抑制土壤有机碳矿化的原因。全球变暖背景下,与单纯温度增加所导致的土壤有机碳矿化释放量相比,冻融循环作用能降低大兴安岭泥炭地活动层中土壤有机碳在短期内碳的释放。  相似文献   

18.
19.
The contribution of deforestation in Russia to the anthropogenic emission of carbon dioxide (CO2) in 1990–2013 is estimated using the methods of computational monitoring. It is found that since 1990 the area of deforestation and forest conversion to other land-use categories is equal to 628.4 x 103 ha. The respective CO2 emissions from deforestation in Russia for the whole analyzed period are estimated at 142200 kt CO2 with the average annual value of 5900 + 2270 kt CO2/year. The largest contribution to the total losses is made by the changes in soil carbon stock (41.6%) and biomass carbon losses (28.8%). CO2 emissions from deforestation make an insignificant contribution to the total anthropogenic CO2 emission in the country (0.2%). Among the CO2 sources in the land use, land-use change, and forestry sector (LULUCF), the emission from deforestation is the lowest with the average for 1990–2013 contribution of about 0.6%.  相似文献   

20.
土壤溶解性有机碳测定方法与应用   总被引:20,自引:0,他引:20       下载免费PDF全文
溶解性有机碳是土壤圈中一种非常活跃的化学物质,它对土壤中化学物质的溶解、吸附、解吸、迁移和毒性等行为均有显著的影响。在现代土壤研究中,出现了与溶解性有机碳相关的众多术语,分析方法也各有不同。从溶解性有机碳、水溶性有机碳、活性有机碳、易氧化碳、微生物量碳、可矿化碳不同术语的角度,概述了这类碳分析意义和测定方法,以期对土壤有机质应用研究起到积极作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号