首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Onset of the persistent activity at Stromboli Volcano (Italy)   总被引:1,自引:1,他引:0  
  相似文献   

2.
Quaternary volcanic rocks of Stromboli (Italy) can be divided into older calc-alkaline and younger shoshonitic series. The SiO2 contents of the rocks range from 50% to 61% but the majority of them are basalts. The rocks show systematic variations in chemical composition which correlate with the volcanic stratigraphy, such that, at a given SiO2 content, K and other incompatible elements such as REE increase with decreasing age. In addition, the La/Yb ratio increases while the K/Rb, K/Ba, Zr/Ce and Zr/Nb ratios decrease towards the top of the volcanic pile. On the other hand, the abundances of transition elements, V, Co, Sc and Zn, like most major elements are broadly similar in comparable rocks of different ages. It is suggested that the parent magmas were derived by partial melting from upper mantle peridotite enriched in incompatible elements by fluids released from the descending oceanic lithosphere. The temporal chemical variations may probably be related to the lengths of time during which fluids were in contact with the upper mantle source.  相似文献   

3.
 A study of volcanic tremor on Stromboli is carried out on the basis of data recorded daily between 1993 and 1995 by a permanent seismic station (STR) located 1.8 km away from the active craters. We also consider the signal of a second station (TF1), which operated for a shorter time span. Changes in the spectral tremor characteristics can be related to modifications in volcanic activity, particularly to lava effusions and explosive sequences. Statistical analyses were carried out on a set of spectra calculated daily from seismic signals where explosion quakes were present or excluded. Principal component analysis and cluster analysis were applied to identify different classes of spectra. Three clusters of spectra are associated with two different states of volcanic activity. One cluster corresponds to a state of low to moderate activity, whereas the two other clusters are present during phases with a high magma column as inferred from the occurrence of lava fountains or effusions. We therefore conclude that variations in volcanic activity at Stromboli are usually linked to changes in the spectral characteristics of volcanic tremor. Site effects are evident when comparing the spectra calculated from signals synchronously recorded at STR and TF1. However, some major spectral peaks at both stations may reflect source properties. Statistical considerations and polarization analysis are in favor of a prevailing presence of P-waves in the tremor signal along with a position of the source northwest of the craters and at shallow depth. Received: 15 December 1996 / Accepted: 31 March 1998  相似文献   

4.
The features of seismic activity on Stromboli are discussed and compared in terms of their relationship with the main changes of volcanic activity from 1990 to 1993.We considered a statistical approach for our data analysis. Cluster analysis was used to seek out classes of spectra which might characterize the condition of the volcanic system. The classes we have found provide insights into a scenario which evolves through different phases of volcanic activity, from paroxysms to low activity. We show that episodes of lava effusion and lava fountaining are heralded by variations in the spectral features of tremor after a preparation time. This result highlights the importance of tremor, and reveals that long-term observations are key to examine slow modifications in a volcanic system such as Stromboli, characterized by open conduits, and persistent explosive activity.  相似文献   

5.
Three small-scale paroxysmal explosions (also called major explosions) interrupted ordinary mild Strombolian activity at Stromboli on May 3, November 8 and 24, 2009. Products were largely confined to the summit area, except in the November 24 event, during which coarse pumiceous lapilli reached the coast. Emission of crystal-poor pumice closely mingled with crystal-rich products characterized the three events. The textural and chemical study of minerals and glassy matrices revealed that the two end-members are mingled together physically in the May 3 and November 24 pumice, whereas November 8 products contain heterogeneous glass with intermediate compositions derived from chemical mixing between crystal-rich and crystal-poor magmas. We here discuss the different degrees of interaction between the two magmas in the three explosions in terms of magma dynamics during small-scale paroxysms.  相似文献   

6.
The discussion about the source of low frequency events generally wrecorded on active volcanoes is still open and needs deeper understanding of the phenomena involved in their generation. Most of the models view such a phenomenon as a source effect (oscillation of volcanic fluids in conduits or cracks), although a different explanation as a path or site effect exists. In the present paper we analysed 26 seismic signals recorded at Vulcano and 60 at Stromboli in order to put some constraints on the functional shape of the recorded signals. They evidence all the characteristics of the low frequency events. The spectral analysis reveals sharp peaks in the range 0.5–4 Hz, while the cepstra suggest that the signals are composed by a two-sine kind function. This suggestion is confirmed by the two-dimensional projections of the reconstructed phase space. The correlation dimension of the attractor is very close to 3 for both the volcanoes confirming the existence of a toroidal structure in the phase space. This implies that we can suggest as a model for the low frequency events source a physical mechanism very similar to a Duffing oscillator or any other quasiperiodic one. In particular in the cases of the analysed volcanoes we recognise two independent oscillations.  相似文献   

7.
8.
The constant and mild activity of Stromboli volcano (Italy) is occasionally interrupted by effusive events and/or more energetic explosions, referred to as major explosions and paroxysms, which are potentially dangerous for the human community. Although several premonitory signals for effusive phases have been identified, precursors of major explosions and paroxysms still remain poorly understood. With the aim of contributing to the identification of possible precursors of energetic events, this work discusses soil temperature data acquired in low-temperature fumaroles at Stromboli in the period 2006–2010. Data analysis revealed that short-term anomalies recorded in the thermal signal are potentially useful in predicting state changes of the volcano. In particular, sudden changes in fumarole temperatures and their hourly gradients were observed from several days to a few hours prior to fracturing and paroxysmal events, heralded by peculiar waveforms of the recorded signals. The qualitative interpretation is supported by a quantitative, theoretical treatment that uses circuit theory to explain the time dependence of the short-period temperature variations, showing a good agreement between theoretical and observational data.  相似文献   

9.
The investigation of the time dynamics of volcanic tremor recorded at Stromboli volcano before the paroxysm occurred on April 5, 2003 was performed, on the base of a new approach, the Fisher Information Measure (FIM), which allows to detect changes in the dynamical behavior of a complex system. The particular observed pattern suggests that the signal varies between sets of disordered states (small FIM) and sets of ordered states (large FIM). Significant precursory changes in the temporal variation of the FIM were revealed at least 42 h before the paroxysm and lasting about 17 h. The timescales highlighted are compatible to those found by other authors and could qualify the FIM as a good detector of regime changes and possible precursors of anomalous volcanic activity.  相似文献   

10.
Significant changes in the local magnetic field marked the resumption of eruptive activity at Stromboli volcano on February 27, 2007. After differential magnetic fields were obtained by filtering out external noise using adaptive filters and seasonal thermal noise using temperature data, we identified step-like changes of 1–4 nT coincident with the opening of eruptive fissures in the upper part of the Sciara del Fuoco. The magnetic variations detected at two stations are closely related to the propagation of a shallow NE–SW magmatic intrusion extending beyond the summit craters area. These observations are consistent with those calculated using piezomagnetic models in which stress-induced changes in rock magnetization are produced by the magmatic intrusion. No significant magnetic changes were observed when the first fractures opened along the NE crater rim. Indeed, the stress-induced magnetization caused by this magmatic activity is expected to be too low because of the structural weakness and/or thermal state of the summit area. The continuous long-term decay characterizing the post-eruptive magnetic pattern can be related to a time-dependent relaxation process. A Maxwell rheology was assumed and the temporal evolution of the piezomagnetic field was evaluated. This allowed us to estimate the rheological properties of the medium; in particular, an average viscosity ranging between 1016 and 1017 Pa⋅s was a relaxation time τ of about 38 days.  相似文献   

11.
Stromboli is an Italian volcanic island known for its persistent state of activity, which leads to frequent mass failures and consequently to frequent tsunamis ranging from large (and rare) catastrophic events involving the entire southern Tyrrhenian Sea to smaller events with, however, extremely strong local impact. Most of tsunamigenic landslides occur in the Sciara del Fuoco (SdF) zone, which is a deep scar in the NW flank of the volcano, that was produced by a Holocene massive flank collapse and that is the accumulation area of all the eruptive ejecta from the craters. Shallow-water bathymetric surveys around the island help one to identify submarine canyons and detachment scars giving evidence of mass instabilities and failures that may have produced and might produce tsunamis. The main purpose of this paper is to call attention to tsunami sources in Stromboli that are located outside the SdF area. Further, we do not touch on tsunami scenarios associated with gigantic sector collapses that have repeat times in the order of several thousands of years, but rather concentrate on intermediate size tsunamis, such as the ones that occurred in December 2002. Though we cannot omit tsunamis from the zone of the SdF, the main emphasis is on the elaboration of preliminary scenarios for three more possible source areas around Stromboli, namely Punta Lena Sud, Forgia Vecchia and Strombolicchio, with the aim of purposeful contributing to the evaluation of the hazard associated with such events and to increase the knowledge of potential threats affecting Stromboli and the nearby islands of the Aeolian archipelago. The simulations show that tsunami sources outside of the SdF can produce disastrous effects. As a consequence, we recommend that the monitoring system that is presently operating in Stromboli and that is focussed on the SdF source area be extended in order to cover even the other sources. Moreover, a synoptic analysis of the results from all the considered tsunami scenarios leads to a very interesting relation between the tsunami total energy and the landslide potential energy, that could be used as a very effective tool to evaluate the expected tsunami size from estimates of the landslide size.  相似文献   

12.
The 5 April 2003 paroxysmal explosion at Stromboli volcano was one of the strongest explosive events of the last century. It occurred while the effusive eruption, begun on 28 December 2002 and finished on 22 July 2003, was still on going and the summit craters of the volcano were obstructed. In this paper, we present a reconstruction of the sequence of events based on thermal and visual images collected from helicopter before, during and immediately after the paroxysm. One month before the blast, ash emission and temperature increase at the bottom of the summit craters were observed. An increasing amount of juvenile components in the emitted ash during March suggested that the magma level within the crater was rising accordingly. Hot degassing vents at the bottom of the summit craters were not persistent, and the craters remained almost entirely obstructed by talus accumulation until the paroxysm occurred. Three minutes before the explosion, we recorded a significant increase in temperature inside Crater 1, accompanied by a thicker gas plume. Thirty-two seconds before the blast, reddish ash was emitted from Crater 1. The paroxysm produced a vulcanian explosion that opened the feeder conduit, obstructed for over three months. The blast was accompanied by a shock wave recorded by the INGV seismic network at 07:13:37 GMT. Explosions with hot material started from Crater 1, and after 15 s propagated to Crater 3, about 100 m away. The velocity of ejecta was ∼80 m s 1, and increased when the eruptive plumes from both craters merged together during the vulcanian phase. An eruptive column rose 1 km above the top of the volcano, and explosions continued mainly at Crater 3. The paroxysm lasted about 9 min, with bombs up to 4 m wide falling on the village of Ginostra, on the west flank of the island, and destroying two houses. This event signalled the start of the declining phase of the effusive eruption, suggesting that the feeder conduit was returning to its former steady conditions, with open vents and continuous, mild strombolian activity.  相似文献   

13.
Seismic observations were carried out at Stromboli from October 16th to 24th, 1972. One three-component seismic station was set up at Semaforo Nuovo, about 2 km on the E of the crater plain. Seismic observations showed the occurrence of microtremors, with variable amplitude but constant frequency content, and different types of explosion earthquakes. Spectral and vibration orbit analyses of microtremors and quakes were made in order to infer their nature and the depth of origin. Changes in microtremor amplitudes corresponding to different phases of volcanic activity indicate that their study may be useful in forecasting strongly explosive volcanic phases at Stromboli.  相似文献   

14.
Pyroclastic density currents (PDC) related to paroxysmal eruptions have caused a large number of casualties in the recent history of Stromboli. We combine here a critical review of historical chronicles with detailed stratigraphic, textural, and petrographic analyses of PDC deposits emplaced at Stromboli over the last century to unravel the origin of currents, their flow mechanism and the depositional dynamics. We focus on the 1930 PDC as they are well described in historical accounts and because the 1930 eruption stands as the most voluminous and destructive paroxysm of the last 13 centuries. Stromboli PDC deposits are recognizable from their architecture and the great abundance of fresh, well-preserved juvenile material. General deposit features indicate that Stromboli PDC formed due to the syn-eruptive gravitational collapse of hot pyroclasts rapidly accumulated over steep slopes. Flow channelization within the several small valleys cut on the flanks of the volcano can enhance the mobility of PDC, as well as the production of fine particles by abrasion and comminution of hot juvenile fragments, thereby increasing the degree of fluidization. Textural analyses and historical accounts also indicate that PDC can be fast (15–20 m/s) and relatively hot (360–700 °C). PDC can thus flow right down the slopes of the volcano, representing a major hazard. For this reason, they must be adequately taken into account when compiling risk maps and evaluating volcanic hazard on the Island of Stromboli.  相似文献   

15.
This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande–Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP–CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41° and N64°, and decoupled from the volcanic structures.  相似文献   

16.
In this work, we report the results of an integrated approach using both seismological and geodetic data provided by the INGV-CT (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania) Stromboli volcano monitoring systems, in order to improve the knowledge of its plumbing system. In particular, we investigated the relationships between the June 1999 seismic swarm, occurring in the area of Stromboli, and the possible activation of the NE–SW oriented volcano-tectonic structure. We analyzed this seismic swarm proposing new locations and a morphological analysis of the waveforms. This approach allowed us to demonstrate that there are relationships between the tectonic activity near Stromboli and the rising of magma. This evidence supports the hypothesis that during the 1999 swarm an intrusive process started from a crustal level where earthquakes were located (about 10–15 km b.s.l.).  相似文献   

17.
Ash fallout collected during 4 days of sampling at Stromboli confirms that a crystal-rich (HP) degassed magma erupts during the Strombolian explosions that are characteristic of the normal activity of this volcano. We identified 3 different types of juvenile ash fragments (fluidal, spongy and dense), which formed through different mechanisms of fragmentation of the low-viscosity, physically heterogeneous (in terms of the size and spatial distribution of bubbles) shoshonitic magma. A small amount (less than 3 vol%) of volatile-rich magma with low porphyricity (LP), erupted as highly vesicular ash fragments, has been collected, together with the HP magma, during normal strombolian explosions. Laboratory experiments and the morphological, textural and compositional investigations of ash fragments reveal that the LP ash is fresh and not recycled from the last paroxysm (15 March 2007). We suggest that small droplets of LP magma are dragged to the surface by the time-variable but persistent supply of deep derived CO2-rich gas bubbles. This coupled ascent of bubbles and LP melts is transient and does not perturb the dynamics of the HP magma within the shallow reservoir. This finding provides a new perspective on how the Stromboli volcano works and has important implications for monitoring strategies.  相似文献   

18.
Microtextural characteristics of fresh ejecta from Stromboli volcano were examined from three periods of differing eruption style and intensity in 2002. Activity shifted from relatively weak and infrequent ash-charged explosions during January through May into two broad cycles of waxing activity in June through late September, and late September through December, followed by the onset on 28 December of the 2002/2003 effusive eruption. Analyzed sets of lapilli from May, September/October, and 28 December show contrasts in the physical properties of magma resident in the shallow conduit during this range of activity. Three distinct textures are observed among the analyzed pyroclasts: low density (LD) with an abundance of subspherical bubbles, the presence of large, irregularly shaped bubbles, and a light-to-transparent glass matrix; transitional texture (TT) with an intermediate number of subspherical bubbles, a high frequency of large, irregularly-shaped bubbles, and a honey colored glass matrix; and high density (HD) with sparse relatively small bubbles, conspicuous large irregular bubbles, and a dark glass matrix. Observational and quantitative data (density, vesicle size) indicate that these textures are linked through variable residence time in Stromboli’s shallow conduit, with an ongoing evolution from LD to HD magma. Calculations suggest that residual LD magma will evolve to HD texture in a period of hours to days. Contrasting amounts of the LD, TT, and HD magmas are present in each sample, with the most TT in May, the most LD in September/October, and the most HD in December. This implies that the shallow magma had a different rheology at each collection period. The viscosity of LD and HD magmas are calculated to be in the range of 2,000 to 2,600 and 3,000 to 5,000 Pa s, respectively, which, with their changing proportions, must have implications for rates of bubble slug ascent and processes of fragmentation. This study suggests that an increasing maturity of magma in Stromboli’s shallow conduit (with resultant increase in viscosity) feeds back to reduce the intensity of explosions, whereas a steady flux of LD magma favors more powerful explosions.  相似文献   

19.
This study focuses on a pyroclastic sequence related to a large-scale paroxysm that occurred during the seventeenth century ad and which can be considered one of the most powerful and hazardous explosive events at the volcano in the past few centuries. Paroxysms are energetic, short-lived explosions which sporadically interrupt normal Strombolian activity at Stromboli and commonly erupt a deep-derived, volatile-rich crystal-poor high-potassium basalt (“low porphyricity” (LP)), together with a shallow, degassed crystal-rich high-potassium to shoshonitic basalt (“high porphyricity” (HP)), which feed normal activity at the volcano. The studied deposit, crops out along the flanks of Sciara del Fuoco and, from base to top, consists of: (1) a layer of HP and LP ash and lapilli; (2) an unwelded layer of coarse HP lapilli and flattened dark scoriae; (3) weakly welded spatter made up of dense HP pyroclasts at the base, overlain by strongly vesicular LP clasts. The textural and chemical zoning of minerals and the glass chemistry of the LP products record repeated mafic recharge events, mixing with an old mushy body and episodes of rapid crystallization due to sudden degassing. Collapse of a foam layer originated by deep degassing probably triggered this large-scale, spatter-forming paroxysm. Decompression induced rapid degassing and vesiculation of the deep volatile-rich magma. The rapid ascent of the foamy magma blob pushed the shallow HP magma out and finally produced a fire fountain that emplaced the LP portion of the spatter.  相似文献   

20.
Seismic activity at Stromboli Volcano is characterized by a variety of signals, emanating from three vents. For a long time, the northwest vent has been in constant activity. Periodically, large explosions occur and material is ejected beyond the crater walls. These large explosions are accompanied by sonic and infrasonic pressure waves in the atmosphere, and explosion quakes. Apart from large explosions, there is constant activity in the form of continuous gas bursts which are related to low infrasonic pulses in the atmosphere and volcanic tremor. We assume that volcanic tremor and low pressure infrasonics are generated by gas bubbles inside the volcanic conduit, and accordingly, we compute synthetic tremor by modeling the source function as a pressure variation in a spherical cavity that propagates through a finely layered medium, by means of Haskell's formalism. To simulate a tremor, we superpose in time domain a large number of such pulses of varying amplitudes and time delays, according to the observed infrasonic series. In addition to the spectral similarity, the observed and synthetic tremor display the same autocorrelation and Hurst exponents, implying similar long-term correlation. We present strong evidence in favour of an interpretation of the spectral peaks of the volcanic tremor at Stromboli in terms of resonances of the layered structure, hence, as a path effect rather than a source effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号