首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-layer features with different prevailing wind directions for two distinct seasons (Southwest Monsoon and Northeast Monsoon) on the west coast of India are studied using data obtained from tower-based sensors at a site located about 500 m from the coast. Only daytime runs have been used for the present analysis. The surface boundary-layer fluxes have been estimated using the eddy correlation method. The surface roughnessz 0 obtained using the stability-corrected wind profiles (Paulson, 1970) has been found to be low for the Southwest monsson season. For the other season,z 0 is relatively high. The drag coefficientC D varies with height in the NE monsoon season but not in the season with lowz 0. This aspect is reflected in the wind profiles for the two seasons and is discussed in detail. The scaling behaviour of friction velocityu * and the turbulence intensity of longitudinal, lateral and vertical winds u, v and w, respectively) are further examined to study their dependence on fetch. Our study shows that for the non-dimensional case, u/u* and v/u* do not show any surface roughness dependence in either season. On the other hand, for w/u* for the season with lowz 0, the values are seen to agree well with that of Panofskyet al. (1977) for homogeneous terrain whereas for the other season with highz 0, the results seem to conform more to the values observed by Smedman and Högström (1983) for coastal terrain. The results are discussed in the light of observations by other investigators.  相似文献   

2.
Horizontal diffusion in the surface layer is dependent on the standard deviation of wind direction fluctuations . Diurnal variation of this parameter in complex terrain was studied for the July 1979 Geysers, Cal., experiment using data from a network of 11 short meteorological towers in the 25 km2 Anderson Creek watershed Valley side slopes are roughly 20 ° and maximum terrain difference is about 1 km.Values of for wind directions sampled for one hour at a height of 10 m are about 35 ° during the daytime. They slowly decrease to about 20 ° by 8 to 10 p.m. as stability increases but wind speeds are still relatively high. After 10 p.m. the drainage flow sets in at most stations, with speeds of 1 to 2 m s-1, and average increases to about 30° during the period 11 p.m. to 6 a.m. In general, highest values of at night are associated with lowest values of wind speed and greatest static stability. This enhancement of by the terrain suggests that horizontal diffusion at night always conforms to that expected during nearly neutral stabilities. That is, Pasquill class D diffusion applies to the horizontal component all night in complex terrain.  相似文献   

3.
Refuge has patchy vegetation in sandy soil. During midday and at night, the surface sources and sinks for heat and moisture may thus be different. Although the Sevilleta is broad and level, its metre-scale heterogeneity could therefore violate an assumption on which Monin-Obukhov similarity theory (MOST) relies. To test the applicability of MOST in such a setting, we measured the standard deviations of vertical (w) and longitudinal velocity (u), temperature (t), and humidity (q), the temperature-humidity covariance (¯tq), and the temperature skewness (St). Dividing the former five quantities by the appropriate flux scales (u*, *, and q*) yielded the nondimensional statistics w/u*, u/u*, t/|t*|, q/|q*|, and ¯tq/t*q*. w/u*, t/|t*|, and St have magnitudes and variations with stability similar to those reported in the literature and, thus, seem to obey MOST. Though u/u* is often presumed not to obey MOST, our u/u* data also agree with MOST scaling arguments. While q/|q*| has the same dependence on stability as t/|t*|, its magnitude is 28% larger. When we ignore ¯tq/t*q* values measured during sunrise and sunset transitions – when MOST is not expected to apply – this statistic has essentially the same magnitude and stability dependence as (t/t*)2. In a flow that truly obeys MOST, (t/t*)2, (q/q*)2, and ¯tq/t*q* should all have the same functional form. That (q/q*)2 differs from the other two suggests that the Sevilleta has an interesting surface not compatible with MOST. The sources of humidity reflect the patchiness while, despite the patchiness, the sources of heat seem uniformly distributed.  相似文献   

4.
Mesoscale measurements of the vertical dispersion coefficient 2 by using a composite turbulence water tank were validated through a comparison with CONDORS (Convective Diffusion Observed with Remote Sensors) field data, and were analysed with respect to the intensity of the thermal flux, mechanical turbulence, and plume release height.It seems possible to correct the plume z values for different release heights below 0.5zi (zi is the mixing height) by applying an equation expressing the height dependency of turbulence intensity. The downwind distance where the plume's mass centre height approaches its final level was also analysed with respect to the above three parameters, and an empirical equation to estimate the downwinddistance derived.  相似文献   

5.
In this paper, a model simulating the effects of topography and altitude on precipitation is presented. Topography has its maximum effect on precipitation when the angle which the wind makes with the slope direction approaches zero and the inclination of the slope is near 45°. The smaller the angle , the greater the influence of slope on precipitation. When <45°, the larger the inclination, the greater the influence of slope on precipitation and the less the difference in precipitation between the windward and the leeward slopes. When <45°, the reverse holds. But for in the range of 0°–45° and in the range 30°–60°, differences in precipitation on both the windward and leeward slopes are not so well marked and can be neglected in general. In condition of uniform slope inclination, precipitation on the windward slope increases with altitude at first and then decreases after attaining a height (H m ) of maximum precipitation; alsoH m is greater, the drier the air mass. When the terrain on the windward side is stepped in shape, it is possible that more than one height of maximum precipitation will occur.  相似文献   

6.
Plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focusis on highly-buoyant plumes that loft near or become trapped in the CBL capping inversion and resistdownward mixing. Such plumes are defined by dimensionless buoyancy fluxes F* 0.1, where F* = Fb/(U w* 2 zi), Fb is the stack buoyancy flux,U is the mean wind speed, w* is the convective velocity scale, and zi is the CBL depth. The aim is to obtain statistically-reliable mean (C) and root-mean-square (rms, c) concentration fields as a function of F* and the dimensionless distance X = w*x/(U zi), where x is the distance downstream of the source.The experiments reveal the following mainresults: (1) For 3 X 4and F* 0.1, the crosswind-integrated concentration (CWIC) fields exhibit distinctly uniform profiles below zi with a CWIC maximum aloft, in contrast to the nonuniform profiles obtained earlier by Willis and Deardorff. (2) The lateral dispersion (y) variation with X is consistent with Taylor's theory for * 0.1 and a buoyancy-enhanced dispersion, y/zi F* 1/3X2/3, forF* = 0.2 and 0.4. (3) The entrapment, the plume fraction above zi, has a mean (E) that follows a systematic variationwith X and F*, and a variability (e/E) that is broad ( 0.3 to 2) near the source but subsides to 0.25 far downstream. (4) Vertical profiles of the concentration fluctuation intensity (c/C) are uniform for z < zi and X > 1.5, but exhibit significant increases: (a) at the surface and close to the source (X 1.5), and(b) in the entrainment zone. (5) The cumulative distribution functions (CDFs) of the scaled concentration fluctuations (c/c) separate into mixed-layer and entrainment-layer CDFs for X 2, with the mixed-layer group collapsing to a single distribution independent of z.These are the first experiments to obtain all components of the lateral and vertical dispersion parameters (rms meander, relative dispersion, total dispersion) for continuous buoyant releases in a convection tank. They also are the first tank experiments to demonstrate agreement with field observations of: (1) the scaled ground-level concentration along the plume centreline, and (2) the dimensionless lateral dispersion _y/z_i of buoyant plumes.  相似文献   

7.
The system transfer function ¦H(v)¦2 at frequencyv (units of Hz) for a vertical velocity propeller anemometer in a statistically stationary and horizontally homogeneous turbulent flow is determined from: (1) experimental estimates of propeller velocity spectra; and (2) estimates of Eulerian vertical velocity spectra based on the hypothesis that degradation of the input vertical velocity Fourier components occurs in the inertial subrange. The experimental estimates of ¦H(v)¦2 were adequately summarized with the mathematical expression for the system transfer function of a first-order system with parameterT which has units of time and is analogous to the time constant of a horizontal velocity propeller anemometer. Dimensional analysis techniques and the Monin-Obukhov similarity hypothesis were used to construct a model for the system parameterT which yielded the result that w /D 1 ( w /)1/3, where w , andD 1 denote the standard deviation of the input vertical velocity fluctuations, the horizontal mean wind speed, and the diameter of the propeller, respectively. The system parameterT is interpreted in terms of the time required for the propeller velocity statistics to become asymptotically independent of time upon being released from rest in a statistically stationary turbulent flow.Currently on leave of absence from the Indian Institute of Technology, New Delhi, India.  相似文献   

8.
The standard deviation of vertical two-point longitudinal velocity fluctuation differences is analyzed experimentally with eleven sets of turbulence measurements obtained at the NASA 150-m ground-winds tower site at Cape Kennedy, Florida. It is concluded that /u *0 is proportional to (fz/u *0)0.22, where the coefficient of proportionality is a function of fz/u *0 and u *0/fL 0. The quantities f and L0 denote the Coriolis parameter and the surface Monin-Obukhov stability length, respectively; u *0 is the surface friction velocity; z is the vertical distance between the two points over which the velocity difference is calculated; and zz is the mean height of the mid-point of the interval z above natural grade. The results of the analysis are valid for 20<-u *0/fL 0<2000.  相似文献   

9.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

10.
Many applied dispersion models require the knowledge of boundary-layer parameters such as sensible heat flux,Q H , friction velocity,u *, and turbulent energy components, w and v . Formulas are suggested for calculating these parameters over a wide variety of types of ground surfaces, based on simple observations of wind speed near the ground and fractional cloud cover, and specification of constants such as roughness length, albedo, and soil moisture availability. Observations ofu *,Q H , w , and v during field experiments in St. Louis and Indianapolis are used to test the formulas for urban sites. Relative errors of about ±20% in the predictions are seen to occur whenu *,Q H , w , and v are large. However, when these quantities are small (e.g.,u * < 0.2 m/s), the errors in the predictions are as large as the mean value of the quantity itself.In addition, it is concluded from studies of available field data and theories that the magnitude of w is not well-known at elevations above about 100m during the late afternoon and night. Some simple parameterizations for w . are suggested that are consistent with the observed steady decrease in ground-level concentration in the afternoon and the sudden increase in concentration that can occur a few hours after sunset due to wind shears associated with a low-level jet, for continuous plumes emitted from moderate to tall stacks.  相似文献   

11.
This study details the observed effects ofatmospheric stability on characteristics of thesurface layer in a low wind speed (U = 1.5 m s-1)regime of tropical West Africa. Theaerodynamic roughness length, z0, anddisplacement height, d, obtained from profilewind-speed data at our bush land site (height 2 m)have values of 0.24 ± 0.10 m and 1.54 ± 0.04 mrespectively. In the unstable range (-2.5 < Ri < -0.1; Riis gradient Richardson number), thestandard deviation in wind speed fluctuations, u, increased from 0.57 ± 0.19 m s-1 toa maximum of 0.7 ± 0.2 m s-1 in near-neutralconditions, and in the stable range, the parameterdecreased rapidly to 0.41 ± 0.15 m s-1 at Ri 0.2.In the same stability range, the horizontal winddispersion, , decreased withincreasing stability from 19 ± 8 deg. to 13 ± 5 deg.The surface-layer integral quantity, u/u*, when plottedas a function of stability, is in agreement with theempirical results. The ratio ofsensible heat flux (estimated) to the net radiationranged between 0.1 and 0.2 at nighttime,increasing to about 0.5 during the daytime, and showeda strong dependency on season.  相似文献   

12.
Local Similarity Relationships In The Urban Boundary Layer   总被引:5,自引:3,他引:2  
To investigate turbulent structures in an urban boundary layer (UBL) with many tallbuildings, a number of non-dimensional variable groups based on turbulent observationsfrom a 325-m meteorological tower in the urban area of Beijing, China, are analyzedin the framework of local similarity. The extension of surface-layer similarity to localsimilarity in the stable and unstable boundary layer is also discussed. According to localsimilarity, dimensionless quantities of variables: e.g., velocity and temperature standarddeviations i/u*l (i=u,v,w) andT/T*l,correlation coefficients of uw and wT covariance, gradients of wind and temperaturem and h, and dissipation rates of turbulent kinetic energy (TKE) andtemperature variance and N can be represented as a functiononly of a local stability parameter z/, where is the local Obukhovlength and z is the height above ground. The average dissipation rates of TKE andtemperature variance are computed by using the u spectrum, and the uw and wTcospectra in the inertial subrange. The functions above were found to be in a goodagreement with observational behaviour of turbulence under unstable conditions, butthere were obvious differences in the stable air.  相似文献   

13.
It is shown that for the purpose of trajectory simulation, the vertical velocityw L (t) of a fluid element, which is moving in a system (such as a forest canopy, or the unstably stratified atmospheric surface layer) whose turbulent velocity scale w is height-dependent, must be chosen from a frequency-distribution which is asymmetric aboutw L = 0. If the gradient w /z varies only slowly with height, correct trajectories may be obtained by adding a bias (where L is the length scale) to a fluctuating velocity chosen from a symmetric distribution with variance w 2(z).  相似文献   

14.
Summary A dispersion model is proposed to predict the continuous vertical variation of the dispersion parameters y and z in case of hot pollutant release to the atmosphere. In such a case, the plume rises far above the ground and is subject to varying levels of turbulence. The framework in this paper can be divided into three approaches: (1) determination of the eddy diffusivitiesK y (z, y ) andK z (z, z ) as functions of height above ground and plume dimensions, (2) determination of both the plume rise and its vertical velocity using a modified version of Brigg's formula, and (3) numerical solution of actual problems with buoyant plumes at each time step. The model results have been applied to a case of pollutant release from fire destruction of a chemical storehouse roof.With 15 Figures  相似文献   

15.
TheConvectiveDiffusionObserved byRemoteSensors (CONDORS) field experiment conducted at the Boulder Atmospheric Observatory used innovative techniques to obtain three-dimensional mappings of plume concentration fields, /Q, of oil fog detected by lidar and chaff detected by Doppler radar. It included extensive meteorological measurements and, in 1983, tracer gases measured at a single sampling arc. Final results from ten hours of elevated and surface release data are summarized here. Many intercomparisons were made. Oil fog /Q measured 40m above the arc are mostly in good agreement withSF 6 values, except in a few instances with large spacial inhomogeneities over short distances. After a correction scheme was applied to compensate for the effect of its settling speed, chaff dy/Q agreed well with those of oil except in two cases of oil fog hot spots. Mass or frequency distribution vs. azimuth or elevation angle comparisons were made for chaff, oil, and wind, with mostly good agreements. Spacial standard deviations, y and z, of chaff and oil agree overall and are consistent at short range with velocity standard deviations vand w 0.6w* (the convective scale velocity), as measured atz>100m. Surface release y is enhanced up to 60% at smallx, consistent with the Prairie Grass measurements and with larger v and reduced wind speed measured near the surface. Decreased y at small dimensionless average times is also noted. Finally, convectively scaled dy, C y, were plotted versus dimensionlessx andz for oil, chaff, and corrected chaff for each 30–60 min period. Aggregated CONDORSC y fields compare well with laboratory tank and LES numerical simulations; surface-released oil fog compares expecially well with the tank experiments. However, large deviations from the norm occurred in individual averaging periods; these deviations correlated strongly with anomalies in measured distributions.On assignment to the US Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, RTP, NC.  相似文献   

16.
The derivation of the Panofsky–Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.  相似文献   

17.
The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (u, w) and temperature (T) are more planar homogeneous than their vertical flux of momentum (u* 2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (>15 %), this unique data set confirmed that single tower measurements represent the canonical structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the moving-equilibrium hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u*, especially when u* was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (Iw) and the arrival frequency of organized structures (/h) predicted from a mixing-layer theory exhibited dependence on the local leaf area index. The broader implications of these findings to the measurement and modelling of RSL flows are also discussed.  相似文献   

18.
Turbulence measurements performed in a stable boundary layer over the sloping ice surface of the Vatnajökull in Iceland are described. The boundary layer, in which katabatic forces are stronger than the large-scale forces, has a structure that closely resembles that of a stable boundary layer overlying a flat land surface, although there are some important differences. In order to compare the two situations the set-up of the instruments on an ice cap in Iceland was reproduced on a flat grass surface at Cabauw, the Netherlands. Wind speed and temperature gradients were calculated and combined with flux measurements made with a sonic anemometer in order to obtain the local stability functions m and h as a function of the local stability parameter z/L. Unlike the situation at Cabauw, where m was linear as a function of z/L, in the katabatically forced boundary layer, the dependence of m on stability was found to be non-linear and related to the height of the wind maximum. Thermal stratification and the depth of the stable boundary layer however seem to be rather similar under these two different forcing conditions.Furthermore, measurements on the ice were used to construct the energy balance. These showed good agreement between observed melt and components contributing to the energy balance: net radiation (supplying 55% of the energy), sensible heat flux (30%) and latent heat flux (15%).Local sources and sinks in the turbulent kinetic energy budget are summed and indicate a reasonable balance in near-neutral conditions but not in more stable situations. The standard deviation of the velocity fluctuations u, v, and w, can be scaled satisfactorily with the local friction velocity u* and the standard deviation of the temperature fluctuation with the local temperature scale *.  相似文献   

19.
Meteorological data of velocity components and temperature have been measured on a mast of height 4.9 m at one site in the Heihe River Basin Field Experiment (HEIFE) conducted in west China. Mean and individual turbulence parameters, power spectra/cospectra, phase angles and their changes withfetch downwind of a change in surface roughness were analyzed. The turbulence characteristics depend strongly on the prevailing wind direction, which in turn is associated with changes in the upwind surface roughness pattern. The results show that values of horizontal velocity standard deviations sigma;u,v scaled with local friction velocity u under different stratifications are larger than those over flat terrain, while the values of w/u have the same values as over flat terrain. The differences between variance values of the horizontal velocity components, u and v, over inhomogeneous terrain were found to be significantly smaller than those over flat terrain. Since energy densities of the w spectra, uw and wT cospectra at low frequencies are relatively lower than those of longitudinal velocity spectra, total energies of w spectra, uw and wT cospectra tend to be in equilibrium with the local terrain. The values of phase angles at the low frequency end of the frequency showed obvious differences associated with changes of roughness.  相似文献   

20.
When applied to a sea surface, shortcomings are noted for the ordinary classification of drag conditions at rigid underlying surfaces according to the Reynolds roughness number Re s . It is shown that in the case of mobile underlying surfaces, it would be more natural to use the dynamical classification of drag conditions according to the order of magnitude of the ratio ( = /) of the momentum flux toward the waves ( w) to the viscous momentum flux through the surface ( w). The relevant estimates of for the main stages of development of the wind waves indicate that the observed values of the drag coefficient of the sea surface correspond to the case of underdeveloped roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号