首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
北京市大气颗粒物中全氟烷基化合物的粒径分布特征   总被引:2,自引:1,他引:1  
人为排放的持久性有机污染物倾向于在细级大气颗粒物中富集,但目前国内外关于大气颗粒物中全氟烷基化合物(PFASs)粒径分布在不同国家地区有显著差异,而在我国北京地区PFASs在不同粒径大气颗粒物中的富集能力尚不清楚。本文采用五级大流量主动分级采样器采集了北京市大气颗粒物样品,利用超声萃取结合高效液相色谱-电喷雾负电离源串联质谱测定PFASs含量,探讨了该地区大气颗粒物中PFASs的浓度水平和粒径分布特征,以及大气颗粒物浓度变化对PFASs浓度变化的影响。结果表明:研究区∑PFASs范围为10. 1~62. 9 pg/m3,76. 4%~83. 8%的PFASs集中分布在PM2. 5颗粒物中,其中含量较高的PFOA、PFNA和PFDA在0. 25μm细颗粒物中占比最高,分别为26. 3%~43. 7%、30. 3%~68. 6%和30. 6%~49. 7%; PFOS在0. 25μm细颗粒物中没有检出,主要分布在1~2. 5μm和0. 25~1μm颗粒物中。此外,研究发现北京市霾天大气颗粒物中∑PFASs为晴天的3. 5倍,且不同粒径大气颗粒物浓度变化对PFASs各化合物表现出不同的富集能力,其中PFOA、PFOS、PFNA和PFDA等中链PFASs更易富集。  相似文献   

2.
水溶性有机氮(WSON)在大气化学和气候变化中具有重要作用,目前鲜有针对WSON粒径分布的研究。本研究利用大流量采样器在2014年9月至2015年7月期间采集了广州市各个季节PM_(10)中不同粒径段(0.49μm、0.49~0.95μm、0.95~1.5μm、1.5~3.0μm、3.0~7.2μm、7.2~10μm)大气颗粒物样品共100个,分析了其中的水溶性总氮(WSTN)、WSON以及水溶性无机氮(WSIN)含量。结果表明,各个粒径段中WSON的浓度呈现相似的季节变化特征,秋、冬季较高,春、夏季较低。WSON主要分布在细颗粒物上,PM_3中WSON的季节平均浓度在1.15~2.62μg/m~3范围内,占PM_(10)中WSON总量的63%~71%。WSON的粒径分布呈现单峰分布,主要富集在0.49~1.5μm粒径段。主成分分析/绝对主成分得分(PCA/APCS)分析表明,0.49μm颗粒物上的WSON主要来源于本地化石燃料的燃烧排放;0.49~0.95μm颗粒物的WSON主要来源于建筑扬尘和光化学氧化二次生成过程;0.95~1.5μm颗粒物的WSON主要来源于光化学氧化二次生成过程。研究结果增加了目前对于WSON粒径分布特征和来源的认识。  相似文献   

3.
细颗粒物(PM_(2.5))对气候、空气质量和人体健康具有显著影响,水溶性无机离子是PM_(2.5)主要成分。在2018-01-24至2018-02-20期间,宁波地区经历了一系列低温和PM_(2.5)浓度较高的天气过程,利用在线离子色谱(MARGA)和颗粒物化学组分监测仪(ACSM)监测宁波气溶胶的无机离子,研究了PM_(2.5)和亚微米细颗粒物(PM_(1.0))中硫酸根(SO_4~(2-))、硝酸根(NO_3~-)和铵根(NH_4~+)(三者统称为SNA)的变化特征。结果表明,SNA的质量浓度均与PM_(2.5)有明显正相关;随PM_(2.5)质量浓度的增加,SO_4~(2-)当量浓度(摩尔浓度×所带电荷数)百分比呈现减少趋势,而NO_3~-百分比呈现增加趋势;NH_4~+百分比未呈现明显变化趋势;NH_4~+主要分布在1.0μm以下粒径的颗粒物中,SO_4~(2-)主要分布在1.0~2.5μm的粒径的颗粒物中;PM_(2.5)中NH_4~+当量浓度百分比低于PM_(1.0)。0~1.0μm粒径段的颗粒物中NH_4~+可以完全中和SO_4~(2-)和NO_3~-,形成硫酸铵和硝酸铵,还可形成其他形态的铵盐;1.0~2.5μm粒径段的颗粒物中NH_4~+不能完全中和SO_4~(2-)及NO_3~-,NH_4~+当量浓度低于SO_4~(2-)和NO_3~-两者当量浓度之和,SNA主要以硝酸铵和硫酸铵形式存在,还存在其他形态的硝酸盐或硫酸盐。本次工作通过对PM_(2.5)和PM_(1.0)中SNA存在形式及其在不同粒径中主导成分的研究,为宁波市大气污染特征的了解提供科学依据。  相似文献   

4.
利用飞机航测于2018年夏季在东北吉林省用宽范围粒径谱仪对10 nm~10μm大气颗粒物的数浓度谱进行在线监测,分析大气颗粒物的垂直分布廓线和粒径分布特征。结果表明,东北地区近地面颗粒物数浓度为5.8×10~3~9.9×10~(4)cm~(-3),平均值为(2.7±2.2)×10~(4)cm~(-3);垂直方向上颗粒物数浓度随海拔升高整体呈降低趋势,且垂直廓线存在两种类型:一种是在边界层附近存在较明显的分界线,即在边界层下方,大气颗粒物数浓度随高度升高而显著降低,在边界层上方,大气颗粒物数浓度变化随高度变化不明显;第二种是随高度的升高,城市上空的大气颗粒物数浓度降低,且海拔高度与大气颗粒物数浓度呈现近似线性负相关的关系。在观测期间,颗粒物的粒径大多集中在爱根模态,其峰值位于25~30 nm,后向气流轨迹显示,气团来源于蒙古及内蒙古地区。在四平城市上空观测到1例新粒子生成事件,其核模态颗粒物数浓度为当日其他地区的4倍,后向气流轨迹显示其气团来源于中国辽宁省且受局地气团影响。  相似文献   

5.
根据成都地理位置特征,分析了2006年下半年Andersen分级采样器所采集的不同粒径的样品中水溶性酸性离子分布,比较分析雾天的污染水平和分级颗粒物中不同粒径对酸雨的贡献,以及不同污染类型对酸雨pH的影响等.得出污染物质主要分布在0.65~3.3μm的粒径范围,雾天颗粒物污染是正常天气下的1.5~4倍.  相似文献   

6.
成都平原区成都粘土的粒度特征及其成因意义   总被引:1,自引:0,他引:1       下载免费PDF全文
对成都平原区内5个代表性的第四系剖面上的成都粘土进行了系统的粒度分析。结果表明,成都粘土以粉砂颗粒(5~50μm)为主,平均粒径约为7.1—7.3φ(7.4—6.6μm),缺少粗尾,〉63μm颗粒的含量很少,以细颗粒物质为主,呈双峰分布。其粒度分布及粒度参数特征与北方黄土及甘孜黄土非常相似,而与河流相沉积物有很大差异,表明成都粘土属于风成堆积。根据光释光测年(OSL)结果,成都平原区的成都粘土是晚更新世中期至晚期末次冰期堆积物,其物质主体是远源的。  相似文献   

7.
二水硫酸钙结晶动力学研究   总被引:1,自引:0,他引:1  
主要研究了过饱和溶液中CaSO4 ·2H2 O晶体成核及生长现象 ,同时对垢的形成机理进行了探讨。实验表明 ,成核延迟时间随溶液过饱和度增大而减小 ;CaSO4 ·2H2 O晶体生长属于表面反应控制 ,且与粒径相关 ,当温度为 3 0℃ ,粒径为2 8~ 67μm ,Ca2 + 浓度为 0 .0 3 5mol/L时 ,晶体生长速度在 0 .5× 10 - 8~ 5 .8× 10 - 8m/s之间  相似文献   

8.
济州岛西南泥质区粒度组分变化的古环境应用   总被引:14,自引:1,他引:13  
利用激光粒度仪对位于东海陆架济州岛西南泥质区的B2孔进行了沉积物粒度分析,根据标准偏差变化检出了B2孔含有4个粒度组分:〉65.6、65.6~10.5、10.5~1.3和〈1.3μm,其中〉65.6μm粗组分含量很低,主要是以底栖有孔虫为主的生源沉积.各组分平均粒径和粒度含量随孔深的变化显示了65.6~10.5μm组分在B2孔含量较高(21%~30%),变化最明显,是该孔对环境变化最敏感的粒度组分.研究表明该敏感组分的粒度含量和平均粒径变化主要受东亚冬季风的强弱变化制约,其变化恢复的近2ka来东亚冬季风变化和中国东部气候变化序列具有很好的一致性,证明65.6~10.5μm粒度组分可以作为东亚冬季风的替代指标.  相似文献   

9.
2008年8月和9月,北京市成功举办了第29届奥运会和第13届残奥会,对这段时间在北京市区(中国矿业大学校园综合楼五层,距奥运村3 km)采集的大气颗粒物的质量浓度和微观形貌类型进行了研究。结果表明:奥运会期间,北京市区大气PM10和PM2.5的日均质量浓度分别小于国家PM10二级标准(150μg/m3)和美国EPA的PM2.5二级标准(65μg/m3),12 h的质量浓度范围分别为7.64~81.63μg/m3和1.91~54.59μg/m3;残奥会期间,12 h的PM10质量浓度范围为33.83~106.36μg/m3,没有超标,PM2.5质量浓度变化范围为15.29~88.30μg/m3,其中出现了3 d超标天,分别为9月6日、7日和14日;从奥运期间PM2.5/PM10的比值(0.26~0.86,大部分值大于0.5)可以看出,奥运期间北京大气颗粒物以细粒子为主。与往年相比,颗粒物质量浓度出现大幅下降趋势。场发射扫描电镜观察显示,奥运会和残奥会期间样品的微观形貌类型主要有球形颗粒、烟尘集合体、不规则矿物和未知颗粒,其数量-粒径分布主要呈单峰分布,峰值均在0.1~0.2μm范围,其中球形颗粒明显占多数。各种分析数据均显示,残奥会期间样品比奥运会期间样品污染要严重。  相似文献   

10.
借助于常规宝石学仪器和偏光显微镜、X射线衍射仪、电子探针、红外光谱仪、紫外—可见分光光度计等仪器设备,对洛南秦紫玉的玉石学特征、显微结构、矿物组成、化学成分以及谱学特征进行了详细研究。结果表明:秦紫玉主要有红色、紫色、绿色及浅黄绿色四种颜色,微透明—半透明,玻璃光泽,折射率1.53~1.55,相对密度2.64~2.66。隐晶质结构,主要组成矿物为粒径5~20μm的他形粒状石英,含量大于90%,次要矿物包括赤铁矿、针铁矿、绿泥石、云母、埃洛石等,还有少量的无定形水合氧化铁等铁质化合物。粒径1~10μm的赤铁矿、针铁矿及无定形水合氧化铁等红褐色铁质化合物呈点状、浸染状无规则分布在石英颗粒之间,其w(FeO)约84.39%~87.08%,含有10%左右的水,是引起玉石红色的主要原因;不同色调的绿色是由玉石中均匀分布的大小约10μm的片状绿泥石和细小鳞片状绢云母(约2~10μm)所引起,云母、埃洛石等黏土矿物会导致绿色玉石呈现浅黄色调;紫色则是由质量分数0.15%~0.23%的钛和铁取代石英晶体中的硅形成空穴色心而呈色。  相似文献   

11.
Abstract Analogue flume experiments were conducted to investigate the transport and sedimentation behaviour of turbulent pyroclastic density currents. The experimental currents were scaled approximately to the natural environment in three ways: (1) they were fully turbulent; (2) they had a very wide range of particle sizes and associated Rouse numbers (the ratio of particle settling velocity to effective turbulent eddy velocity in the current); and (3) they contained particles of two different densities. Two sets of surge‐type experiments were conducted in a 5 m long, water‐filled lock‐exchange flume at five different volumetric particle concentrations from 0·6% to 23%. In one set (one‐component experiments), the currents contained just dense particles; in the other set (two‐component experiments), they contained both light and dense particles in equal volume proportions. In both sets of experiments, the population of each component had a log‐normal size distribution. In the two‐component experiments, the size range of the light particle population was selected in order to be in hydrodynamic equivalence with that of the dense particles. Dense particles were normally graded, both vertically and downstream, in the deposits from both sets of experiments. The mass loading (normalized to the initial mass of the suspension) and grain size of the dense component in the deposits decreased with distance from the reservoir and were insensitive to initial total particle concentration in the currents. On the other hand, in the two‐component experiments, the light particles were extremely sensitive to concentration. They were deposited in hydrodynamic equivalence with the dense particles from dilute currents, but were segregated efficiently at concentrations higher than a few per cent. With increasing particle concentration, the large, light particles were carried progressively further down the flume because of buoyancy effects. Deposits from the high‐concentration currents exhibited reverse vertical grading of the large, light particles. Efficient segregation of the light component was observed even if the bulk density of the current was less than that of the light particles. In both sets of experiments, marked inflexions in the rate of downstream decline in mass loading and maximum grain size of the dense component can be attributed to the presence of two different particle settling regimes in the flow: (1) particles with Rouse numbers >2·5, which did not respond to the turbulence and settled rapidly; and (2) particles with Rouse numbers <2·5, which followed the turbulent eddies and settled slowly. The results are applied to the transport and sedimentation dynamics of pyroclastic density currents that generate large, widespread ignimbrites. Field data fail to reveal significant departures from aerodynamic equivalence between pumice and lithic clasts in three such ignimbrites: the particulate loads of some large ignimbrites are transported principally in turbulent suspensions of low concentration. In some ignimbrites, the well‐developed inflexions in curves of maximum lithic (ML) size vs. distance can be attributed to the existence of distinct high and low Rouse number particle settling regimes that mark the transition from an overcharged state to one in which the residual particulate load is transported more effectively by turbulence.  相似文献   

12.
Measurements of the concentration and size distribution of aerosol particles in the size-ranges of 0.5–20 μm and 16–700 nm diameters were made during six fog episodes over the south Indian Ocean. Observations show that concentrations of particles of all sizes start decreasing 1–2 hours before the occurrence of fog. This decrease is more prominent for coarse particles of >1 μm diameter and continues until 10–20 minutes before the onset of fog when particle concentrations in all size ranges rapidly increase by one/two orders of magnitude in ∼20 minutes. Thereafter, concentrations of particles of all sizes gradually decrease until the dissipation of fog. After the fog dissipation, concentrations of coarse mode particles rapidly increase and restore to their pre-fog levels but concentrations of the Aitken mode particles decrease slowly and reach their pre-fog levels only after 1–2 hours. The net effect of fog is to change the bimodal size distributions of aerosols with a coarse mode at 1.0 μm and an accumulation mode at 40–60 nm to a power law size distribution. It is proposed that the preferential growth and sedimentation of the coarse mode hygroscopic particles in the initial phase cause a large decrease in the aerosol surface area. As a result, the low vapour pressure gases which were initially being used for the growth of coarse mode particles, now accelerate the growth rates of the accumulation and Aitken mode particles.  相似文献   

13.
Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5–16 μm) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 μm fraction varied from 65 to 1040 ng/m3 of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy (μXANES) and X-ray diffraction (μXRD) and found to contain multiple As-bearing mineral species, including Fe–As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.  相似文献   

14.
The present study examines variation of ambient aerosol mass and number concentrations in Chiang Mai, Thailand during winter. Aerosol particle samples were collected and measured at four different sites, representative of urban, industrial, residential and rural areas during daytime between December 2003 and January 2004. Average 10 h particulate matter (PM) mass concentrations were found to be in the range of 75–290 ì g/m3, with average value of 149 ± 45 ì g/m3. Urban and industrial areas appeared to have higher PM loading than residential and rural areas. Number concentration and size distribution of particles in the range of 0.3–10.0 ìm did not exhibit any marked variation between sites. Relatively stable number concentrations were reported. Temporal variation of number concentrations was not clearly significant. No short term peak observed during rush hours. During sampling period, the average number concentration for 0.3–0.5, 0.5–1.0, 1.0–5.0 and 5.0–10.0 ìm were 6.60 × 106, 1.18 × 106, 2.11 × 105 and 1.12 × 104/m3, respectively. Particles with diameter smaller than 1.0 ìm accounted for over 90 % of the total number concentration. Concentrations of major metals were determined by atomic absorption spectrophotometer (Pb, Fe, Al, Si, Cr, Cd, Ni, Zn) and flame photometer (K, Na and Ca). Data obtained were used to identify probable sources via a multivariate analysis. Si, Na, Fe, Ca, Al and K were the six dominant elements in the airborne PM. Principle component analysis was carried out and major sources of airborne PM in Chiang Mai were determined, namely, (1) long distance sources such as sea spray, earth soil and industrial combustion, (2) short-distance sources such as crustal re-suspension, vehicular related emissions and vegetation burning, and (3) the unknown distance sources with low influence of traffic emissions.  相似文献   

15.
河北省阳原盆地井儿洼钻孔磁化率、粒度反映的环境意义   总被引:6,自引:0,他引:6  
根据河北省阳原盆地井儿洼钻孔岩芯湖相沉积物的粒度特征,划分出大约0.2Ma以来,井儿洼地区经历了湖沼-浅湖-滨浅湖-滨湖的演化过程,其中至少存在8个高-低水位变化旋回。湖泊不同的演化阶段应用不同的粒级颗粒含量来作为环境指标。在滨湖环境下,50~100μm,>50μm及中值粒径具有良好的环境指示意义;浅湖环境中,<5μm或2~50μm的细颗粒是较好的指标。不同的沉积相中,磁化率的强度与分粒级颗粒含量的相关性不同:滨-浅湖相中磁化率强度与粗粒沉积物呈正相关;湖滨沼泽相中磁化率强度与细粒含量呈正相关;咸化滨湖中磁化率与粒度基本不相关。   相似文献   

16.
All modes of surface transportation can be disrupted by visibility degradation caused by airborne volcanic ash. Despite much qualitative evidence of low visibility on roads following historical eruptions worldwide, there have been few detailed studies that have attempted to quantify relationships between visibility conditions and observed impacts on network functionality and safety. In the absence of detailed field observations, such gaps in knowledge can be filled by developing empirical datasets through laboratory investigations. Here, we use historical eruption data to estimate a plausible range of ash-settling rates and ash particle characteristics for Auckland city, New Zealand. We propose and implement a new experimental set-up in controlled laboratory conditions, which incorporates a dual-pass transmissometer and solid aerosol generator, to reproduce these ash-settling rates and calculate visual ranges through the associated airborne volcanic ash. Our findings demonstrate that visibility is most impaired for high ash-settling rates (i.e. > 500 g m?2 h?1) and particle size is deemed the most influential ash characteristic for visual range. For the samples tested (all < 320 μm particle diameter), visibility was restricted to ~ 1–2 m when ash settling was replicated for very high rates (i.e. ~ 4000 g m?2 h?1) and was especially low when ash particles were fine-grained, more irregular in shape and lighter in colour. Finally, we consider potential implications for disruption to surface transportation in Auckland through comparisons with existing research which investigates the consequences of visual range reduction for other atmospheric hazards such as fog. This includes discussing how our approach might be utilised in emergency and transport management planning. Finally, we summarise strategies available for the mitigation of visibility degradation in environments contaminated with volcanic ash.  相似文献   

17.
An equal settling ratio is an important factor in estimating particle separation accuracy. However, this factor is often calculated using the settling velocity in stationary water, there are no examples of calculation of the equal settling ratio in an actual separator. This is difficult because particle movement in a separator is very complicated, and even simple periodic motions, such as the oscillation field used with many separators, are ignored in many cases. The authors have previously reported on the relation between the equal settling ratio and the oscillation frequency by analysis of particle movement in vertically oscillating water, using spherical particles of glass (average size 435 μm) and zirconia (202 μm) which have the same settling velocity in stationary water. In this study, the influence of particle diameter on the change in the settling velocity in oscillating water was experimentally investigated for three pairs of glass and zirconia particles having different sizes under 0.5 mm, which have the same settling velocity in stationary water. The settling velocities of different-sized particles decreased at different rates in oscillating water, indicating that the equal settling ratio is reduced by water oscillation. We conclude that water oscillation improves the accuracy of size separation for glass particles over 300 μm and zirconia particles over 150 μm when glass and zirconia particles are separated from each other with the difference of these settling velocities.  相似文献   

18.
Microscopic morphology and elemental composition of atmospheric particulate matter (PM) in 13 different size fractions from 0.01 to 10 μm were studied using a Field Emission Scanning Electron Microscope with Energy-Dispersive Spectrometer (FESEM–EDX). The relative mass fractions exhibited a bimodal distribution with a major mode in the fine range (0.18–1 μm) and a minor mode in the coarse range (>1 μm), suggesting that the major pollution of PM is fine particles in this area of Urumqi atmosphere. The PM could be classified as follows: aluminosilicate/silica mineral, Si–Al rich fly ash, Fe oxide particle, Ti dominant particle, sulfate/carbonate crystal, carbonaceous aerosols (including soot, organic carbon, tar ball and irregularly shaped carbon). The soot and organic carbon with anthropogenic sources are dominant types in fine range samples (<1 μm). The natural source minerals and secondary synthesized sulfate/carbonate crystals were accumulated in the coarse range (>1 μm). Elemental composition of various types of particles (0.056–5.6 μm) was also analyzed by EDX. C, S, O, N, Si, Al, Fe, Ca, Na, K, Mg, Cl, F, Hg were detected in most samples. Si, Al and Ca accumulated in coarse fractions, while S and Hg mainly accumulated in fine fractions. Concentrations of 15 metallic elements in size range from 0.1 μm to 5.6 μm were divided into three groups based on their possible sources. (1) The crustal elements (Al, Mg, Fe, Mn and V), mainly present in coarse particles (>1 μm); and (2) the anthropogenic source elements (Ca, Ni, As, Cu, Pb, Cd and Hg). The concentrations of Ca and Ni increased with increasing particle size, while As, Cu, Pb, Cd and Hg showed opposite trends. As, Cu, Pb, Cd and Hg accumulated mainly in fine fraction (<1 μm). (3) The multi sources elements (Cr, Co and Se) possibly come from both natural and anthropogenic sources. High levels of heavy metals, especially Hg in nanosize particles, may pose great risk to human health.  相似文献   

19.
基于煤层气井产出煤粉浓度的现场连续监测,采用煤粉浓度监测仪、激光粒度测试仪、反射偏光显微镜、X射线衍射、电子扫描电镜带X射线能谱仪,研究了临汾区块煤层气井排采过程中产出煤粉的浓度、粒度、成分和表面特征,分析了煤粉特征的影响因素,探讨了煤粉产出机理。结果表明,临汾区块平均煤粉浓度随排采阶段的变化趋势是排水降压阶段<憋压排采阶段<气水合采阶段;不同开发层段产出的煤粉浓度变化趋势是单采5号煤<合采5号和8号煤<合采(4+5)号、(8+9)号煤。煤粉颗粒粒径分布范围广,为0.5~1 000 μm,多集中在100 μm以下。煤粉成分以无机矿物和镜质组为主,无机矿物以硬石膏、黄铁矿和伊利石为主。将煤粉颗粒分为光滑表面和粗糙表面两种,光滑表面的煤粉颗粒以C元素为主,粗糙表面的煤粉颗粒以Fe、S、O元素为主。煤粉产出与煤中矿物含量、镜质组含量以及构造煤发育程度和排采阶段有关。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号