首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Developments in performance‐based seismic design and assessment approaches have emphasized the importance of considering residual deformations. Recent investigations have also led to a proposed direct displacement‐based design (DDBD) approach which includes an explicit consideration of the expected residual deformations as an integral part of the design process. Having estimated the expected residual deformations in a structure, engineers are faced with the problem of reducing them to meet the targeted performance levels under pre‐defined seismic hazard levels. Previous studies have identified the post‐yield stiffness as a primary factor influencing the magnitude of residual deformations in single degree of freedom and multiple degree of freedom structures. In this paper, a series of simple approaches to increase the post‐yield stiffness of traditional framed and braced systems for the purpose of reducing residual deformations are investigated. These methods do not utilize recentring post‐tensioned technology. This contribution addresses the feasibility of altering the lateral post‐yield stiffness of structural systems by: (i) using different reinforcement materials with beneficial features in their stress–strain behaviour; (ii) re‐designing the section geometry and properties of primary seismic‐resisting elements; and (iii) introducing a secondary elastic frame to act in parallel with the primary system. The efficiency of each of these techniques is investigated through monotonic and cyclic moment‐curvature and non‐linear time‐history analyses. Of these approaches the design and introduction of an elastic secondary system was found to be most effective and consistent in reducing residual deformations. A simplified design approach for achieving the desired increase of a system's post‐yield stiffness is also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Forecasting of extreme events and phenomena that respond to non-Gaussian heavy-tailed distributions (e.g., extreme environmental events, rock permeability, rock fracture intensity, earthquake magnitudes) is essential to environmental and geoscience risk analysis. In this paper, new parametric heavy-tailed distributions are devised starting from the exponential power probability density function (pdf) which is modified by explicitly including higher-order “cumulant parameters” into the pdf. Instead of dealing with whole power random variables, novel “residual” random variables are proposed to reconstruct the cumulant generating function. The expected value of a residual random variable with the corresponding pdf for order G, gives the input higher-order cumulant parameter. Thus, each parametric pdf is used to simulate a random variable containing residuals that yield, in average, the expected cumulant parameter. The cumulant parameters allow the formulation of heavy-tailed skewed pdfs beyond the lognormal to handle extreme events. Monte Carlo simulation of heavy-tailed distributions with higher-order parameters is demonstrated with a simple example for permeability.  相似文献   

3.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We consider zoning for the design criterion that minimizes the expected present value of the total cost, including the initial cost as well as losses due to damage and failure. The problem consists of the following: given the number of zones, their boundaries and design coefficients must be such that they minimize the expected present value of all structures built in the region. We will refer to solutions in one or more dimensions, depending on the number of the types of structures built in the region to be zoned. Two methods are proposed to solve the problems. The first method is based on the different combinations performed in order to attain optimum zoning. The second method uses an analogy to the evolution of biological systems. The work ends by applying the methods developed to a region of known seismicity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Fluorine and chlorine have been determined in samples of lavas and pyroclastic products from the islands of Lipari and Vulcano, which form the southernmost portion of the Aeolian arc, because their present distribution may provide additional information for a better understanding of the differentiation and eruptive mechanisms affecting these volcanoes. On the basis of previous data which did not reveal a significant presence of Cl- and F-bearing minerals, these two elements are expected to concentrate in the residual melt during differentiation, following a distribution pattern similar to that of lithium that is a typical residual constituent. The analytical results are in good agreement with the hypothesis which attributes a positive role to potassium in the solubility of volatiles in the melt phase, while silica would favour their escaping in a gaseous form. For rocks representing the last stages of differentiation a sharp increase in litium concentration is observed, and the relative loss of fluorine and chlorine is attributed to their releasing as constituents of fumarolic fumes. If the system is to a certain extent sealed, a « normal » passive enrichment for all the considered elements may occur.  相似文献   

6.
Univariate and bivariate Gamma distributions are among the most widely used distributions in hydrological statistical modeling and applications. This article presents the construction of a new bivariate Gamma distribution which is generated from the functional scale parameter. The utilization of the proposed bivariate Gamma distribution for drought modeling is described by deriving the exact distribution of the inter-arrival time and the proportion of drought along with their moments, assuming that both the lengths of drought duration (X) and non-drought duration (Y) follow this bivariate Gamma distribution. The model parameters of this distribution are estimated by maximum likelihood method and an objective Bayesian analysis using Jeffreys prior and Markov Chain Monte Carlo method. These methods are applied to a real drought dataset from the State of Colorado, USA.  相似文献   

7.
Abstract

Various theoretical expressions are presented for determining risk in water resources systems design based on floods modelled by dependent processes. The effect of dependence on the simple risks involved in any engineering design is investigated on the basis of the lag-one Markov process. Asymptotically dependent process formulations reduce to independent case solutions that are already available in the literature. It is shown that a design risk value can be determined if the expected project life, serial correlation coefficient and simple risk are known. Necessary procedures and tables are presented for risk calculations when the variables concerned are serially correlated.  相似文献   

8.
We have developed a new numerical method to determine the shape (shape factor), depth, polarization angle, and electric dipole moment of a buried structure from residual self-potential (SP) anomalies. The method is based on defining the anomaly value at the origin and four characteristic points and their corresponding distances on the anomaly profile. The problem of shape determination from residual SP anomaly has been transformed into the problem of finding a solution to a nonlinear equation of the form q = f (q). Knowing the shape, the depth, polarization angle and the electric dipole moment are determined individually using three linear equations. Formulas have been derived for spheres and cylinders. By using all possible combinations of the four characteristic points and their corresponding distances, a procedure is developed for automated determination of the best-fit-model parameters of the buried structure from SP anomalies. The method was applied to synthetic data with 5% random errors and tested on a field example from Colorado. In both cases, the model parameters obtained by the present method, particularly the shape and depth of the buried structures are found in good agreement with the actual ones. The present method has the capability of avoiding highly noisy data points and enforcing the incorporation of points of the least random errors to enhance the interpretation results.  相似文献   

9.
Magma mixing: petrological process and volcanological tool   总被引:4,自引:0,他引:4  
Magma mixing is a widespread, if not universal igneous phenomenon of variable importance. The evidence for magma mixing is found primarily in glassy tephra; the consolidation of lava obscures the evidence. Inclusions of glass in big crystals in tephra, because of their greater range in composition compared to the whole rock and the residual glass, indicate that the big crystals were derived from separate systems which mixed together prior to and during eruption. The observed or reconstructed concentration of K2O in inclusions of glass in large crystals represent the composition of the contaminant and host systems. Selective enrichment in K2O during entrapment of melt by growing crystals is shown to be negligible. The weight percents of K2O in host, contaminant and residual glass and bulk rock determine the proportions of contaminant and host required to yield either the residual glass or bulk rock. In several cases the proportion of contaminant required is substantially larger than the proportion of crystals in the hybrid magma; therefore, by heat budget argument, the contaminant was partly liquid when contamination began. In some tephra individual phenocrysts contain glasses which are more silicic toward the center of the crystal indicating that the crystal grew from a melt whose composition changed in the opposite sense to that expected for progressive solidification of a closed system. Space time associations of compositionally distinct glassy tephra with contaminated magmas suggest coexistence of basaltic and silicic melts within magma systems. Evidence of contamination is present in most tephra studied so far. Magma mixing appears to be the prevalent process whereby contamination occurs. Magma mixing seems to be particularly evident in systems where there is independent evidence for a vapor-saturated magma reservoir. Probably vapor saturation promotes mixing in magma systems. Magma mixing probably is an important mechanism of compositional diversification (differentiation) of volcanic rocks from continental margin and possibly other environments.Textural evidence of the onset of magma mixing can be related to disturbance of a complex reservoir immediately before ascent and eruption. Thus, conditions before mixing can be ascribed to the reservoir. In this way it is possible to learn about the reservoir: its composition, its diversity, its depth, its walls. It is also possible to learn about the causes of eruption: whether by increase in gas pressure due to either progressive consolidation, or heating from below by an injection of hot magma, or by encounter with ground water; whether by buoyant rise. Evaluation of these problems requires also a thorough knowledge of the chronology of particular eruptions. Thus, magma mixing is a useful volcanological tool.  相似文献   

10.
The linear and nonlinear stabilities of the single degree of freedom spring-slider system which accords to the revised rate- and state-dependent friction law (RSF) (Nagata et al. J Geophys Res 117 (B2):B2314, 2012) are analyzed. The revised ageing law obtained by Nagata et al. (J Geophys Res 117 (B2):B2314, 2012) incorporates the effects of changes in shear stress. Numerical simulations on the cyclic stick–slip motions of the system are developed and compared with the results of the systems according to the original ageing law or the slip law. From the insight of the stability analyses and numerical simulations, it is found that the revised ageing law integrates the “healing effect” feature of the original ageing law and the dynamic slip features of the slip law. In the stick–slip cycles, the velocity decreases with non-constant states during the dynamic overshoot for the revised ageing law, which is different from both the original ageing law and the slip law. Although the revised ageing law concluded from the low velocity friction experiments cannot account for the earthquake-like high velocity friction experiments, it can be used in earthquake nucleation with low velocity. The stability analyses and the results of numerical simulations are helpful to understanding the implications of the revised ageing law.  相似文献   

11.
Return period of bivariate distributed extreme hydrological events   总被引:5,自引:3,他引:5  
 Extreme hydrological events are inevitable and stochastic in nature. Characterized by multiple properties, the multivariate distribution is a better approach to represent this complex phenomenon than the univariate frequency analysis. However, it requires considerably more data and more sophisticated mathematical analysis. Therefore, a bivariate distribution is the most common method for modeling these extreme events. The return periods for a bivariate distribution can be defined using either separate single random variables or two joint random variables. In the latter case, the return periods can be defined using one random variable equaling or exceeding a certain magnitude and/or another random variable equaling or exceeding another magnitude or the conditional return periods of one random variable given another random variable equaling or exceeding a certain magnitude. In this study, the bivariate extreme value distribution with the Gumbel marginal distributions is used to model extreme flood events characterized by flood volume and flood peak. The proposed methodology is applied to the recorded daily streamflow from Ichu of the Pachang River located in Southern Taiwan. The results show a good agreement between the theoretical models and observed flood data. The author wishes to thank the two anonymous reviewers for their constructive comments that improving the quality of this work.  相似文献   

12.
13.
In the water flooding of mixed-wet porous media, oil may drain down to relatively low residual oil saturations (Sor). Various studies have indicated that such low saturations can only be reached when oil layers in pore corners are included in the pore-scale modelling. These processes within a macroscopic porous medium can be modelled at the pore-scale by incorporating the fundamental physics of capillary dominated displacement within idealised pore network models. Recently, the authors have developed thermodynamic criteria for oil layer existence in pores with non-uniform wettability which takes as input geometrically and topologically representative networks, to calculate realistic Sor values for mixed-wet and oil-wet sandstones [16, 21]. This previous work is developed in this paper to include (i) the visualisation of the 3D structure of this residual oil, and (ii) a statistical analysis of this “residual/remaining” oil. Both the visualisation and the statistical analysis are done under a wide range of wettability conditions, which is reported for the first time in this paper.The structure of residual oil for strongly water wet systems is well known (where residual = remaining oil) and our model agrees with this but this structure changes radically for mixed wet systems (where residual  remaining) and this has not yet been visualised experimentally. We find that for more water-wet systems high final residual oil saturations are reached at relatively small amounts of water injected and this oil is present in the pores as bulk oil. On the other hand, for more oil-wet systems we find a slow decrease of the amount of remaining oil with increasing amounts of injected water. During the process, the remaining connectivity of the oil phase is increasingly provided by oil layers only, hence the slow drainage. The final residual oil saturation, only reached in the theoretical limit of an infinite amount of injected water, is almost entirely contained in large number of (relatively low volume) oil layers, which are present in pores of most radius sizes.  相似文献   

14.
A frequency-factor based approach for stochastic simulation of bivariate gamma distribution is proposed. The approach involves generation of bivariate normal samples with a correlation coefficient consistent with the correlation coefficient of the corresponding bivariate gamma samples. Then the bivariate normal samples are transformed to bivariate gamma samples using the well-known general equation of hydrological frequency analysis. We demonstrate that the proposed bivariate gamma simulation approach is capable of generating random sample pairs which not only have the desired marginal densities of component random variables but also their correlation coefficient. Scatter plots of simulated bivariate sample pairs also exhibit appropriate linear patterns (dependence structure) that are commonly observed in environmental and hydrological applications. Caution should also be exercised when specifying combinations of coefficients of skewness and the correlation coefficient for bivariate gamma simulation.  相似文献   

15.
Sheng Yue  Peter Rasmussen 《水文研究》2002,16(14):2881-2898
Basic concepts such as conditional probability distributions, conditional return periods, and joint return periods are important to understand and to interpret multivariate hydrological events such as floods and storms. However, these concepts are not well documented in the open literature. This paper assembles and clarifies these concepts, and illustrates their practical utility. Relationships between joint return periods and univariate return periods are also derived. These concepts and relationships are demonstrated by applying a bivariate extreme value distribution to represent the joint distribution of flood peak and volume from an actual basin. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Uncertainty and variability in bivariate modeling of hydrological droughts   总被引:2,自引:1,他引:1  
There are two kinds of uncertainty factors in modeling the bivariate distribution of hydrological droughts: the alteration of predefined critical ratios for pooling droughts and excluding minor droughts and the temporal variability of univariate and/or bivariate characteristics of droughts due to the impact of human activities. Daily flow data covering a period of 56 hydrological years from two gauging stations from a humid region in South China are used. The influences of alterations of threshold values of flow and critical ratios of pooling droughts and excluding minor droughts on drought properties are analyzed. Six conventional univariate models and three Archimedean copulas are employed to fit the marginal and joint distributions of drought properties, the Kolmogorov–Smirnov and Anderson–Darling methods are used for testing the goodness-of-fit of the univariate model, and the Cramer-von Mises method based on Rosenblatt’s transform is applied for the test of the bivariate model. The change point analysis of the copula parameter of bivariate distribution of droughts is first made. Results demonstrate that both the statistical characteristics of each drought property and their bivariate joint distributions are sensitive to the critical ratio of excluding minor droughts. A model can be selected to fit the marginal distribution for drought deficit volume or maximum deficit, but it is not determined for drought duration with the lower ratios of the pooling and excluding droughts. The statistical uncertainty of drought duration makes the modeling of bivariate joint distribution of drought duration and deficit volume or of drought duration and maximum deficit undermined. Change points significantly occurred in the period from the late 1970s to the middle 1980s for a single drought property and the copula parameter of their joint distribution due to the impact of human activities. The difference between two subseries separated by the change point is remarkable in the magnitudes of drought properties and the joint return periods. A copula function can be selected to optimally fit the bivariate distribution, provided that the critical ratios of pooling and excluding droughts are great enough such as the optimal value of 0.4 in the case study. It is valuable that the modeling and designing of the bivariate joint correlation and distribution of drought properties can be performed on the subseries separated by the change point of the copula parameter.  相似文献   

17.
18.
It is widely accepted that ductility design improves the seismic capacity of structures worldwide. Nevertheless, inelastic deformation allows serious damage to occur in structures. Previous studies have shown that a certain level of postyield stiffness may reduce both the peak displacement and residual deformation of a structure. In recent years, several high-strength elastic materials, such as fiber-reinforced polymer (FRP) and high-strength steel bars, have been developed. Application of these materials can easily provide a structure with a much higher and more stable postyield stiffness. Many materials, members, and structures that incorporate both high-strength elastic materials and conventional materials show significant postyield hardening (PYH) behaviors. The significant postyield stiffness of PYH structures can help effectively reduce both peak and residual deformations, providing a choice when designing resilient structures. However, the findings of previous studies of structures with elastic-perfectly plastic (EPP) behavior or small postyield stiffness may not be accurate for PYH structures. The postyield stiffness of a structure must be considered an important primary structural parameter, in addition to initial stiffness, yielding strength, and ductility. In this paper, extensive time history and statistical analyses are carried out for PYH single–degree-of-freedom (SDOF) systems. The mean values and coefficients of variation of the peak displacement and residual deformation are obtained and discussed. A new R-μp-T-α relationship and damage index for PYH structures are proposed. A theoretical model for the calculation of residual deformation is also established. These models provide a basis for developing the appropriate seismic design and performance evaluation procedures for PYH structures.  相似文献   

19.
Based on the fact that the Hankel matrix constructed by noise-free seismic data is low-rank, low-rank approximation (or rank-reduction) methods have been widely used for removing noise from seismic data. Due to the linear-event assumption of the traditional low-rank approximation method, it is difficult to define a rank that optimally separates the data subspace into signal and noise subspaces. For preserving the most useful signal energy, a relatively large rank threshold is often chosen, which inevitably leaves residual noise. To reduce the energy of residual noise, we propose an optimally damped rank-reduction method. The optimal damping is applied via two steps. In the first step, a set of optimal damping weights is derived. In the second step, we derive an optimal singular value damping operator. We review several traditional low-rank methods and compare their performance with the new one. We also compare these low-rank methods with two sparsity-promoting transform methods. Examples demonstrate that the proposed optimally damped rank-reduction method could get significantly cleaner denoised images compared with the state-of-the-art methods.  相似文献   

20.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号