首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phlogopites in the wolgidites, fitzroyites and cedricites (leucite lamproites) of the West Kimberley area range in composition from titaniferous phlogopite to titaniferous tetraferriphlogopite. Two distinct compositional trends are present. In wolgidites micas are characterized by strong total iron enrichment, moderate Al and Mg depletion and little enrichment in tetrahedral ferric iron. Micas in fitzroyites and cedricites are characterized by strong depletion in Al and strong enrichment in tetrahedral ferric iron at approximately constant Mg contents. Individual centers of fitzroyite intrusion are characterized by distinct mica TiO2 contents. The phlogopite compositional trends at low pressures are very different to those of kimberlite micas. An origin of these lamproites involving differentiation of a kimberlitic magma is considered unlikely.  相似文献   

2.
A routine palaeomagnetic study of the 1800 Ma old Hart dolerite shows that sample directions of magnetism give good within-site grouping at 12 sites after magnetic cleaning. However, the site mean directions are scattered over one-quarter of the sphere, a feature that apparently does not arise from poor structural control. A baked contact test confirms that the magnetization is original. Comparison of bulk NRM, TRM, ARM and saturation IRM properties has been made with the Modipe gabbro of southern Africa from which a palaeointensity has previously been estimated. These measurements are consistent with the hypothesis that the main dipole field intensity temporarily was much reduced with respect to the non-dipole field 1800 m.y. ago resulting in increased directional scatter from secular variation. The average of the site VGPs at 29N 46E with A95 = 24° thus is still a viable estimate of the palaeomagnetic pole at that time bearing in mind the larger than usual statistical error associated with it.  相似文献   

3.
The term ‘cap carbonate’ is commonly used to describe carbonate units associated with glacigenic deposits in Neoproterozoic successions. Attempts to use carbonate units as stratigraphic markers have been counfounded by inconsistent identification of ‘cap carbonates’ and a somewhat broad use of the term. Systematic sedimentological and geochemical analysis of carbonate rocks (mostly dolomite) associated with glacigenic deposits from the Neoproterozoic succession of the Kimberley region, north‐western Australia, shows that it is possible to characterize such units by their specific mineralogical, sedimentological, petrographic, geochemical and stratigraphic features. Hence, it is possible to differentiate true ‘cap carbonates’ from other carbonate units that are associated with glacigenic deposits. In the Kimberley successions two broad carbonate types are identified that reflect two stratigraphically distinct depositional realms. Carbonate rocks from the Egan Formation and Boonall Dolomite (the youngest carbonate units in the succession) are characterized by sedimentary components and features that are consistent with deposition on shallow platforms or shelves, analogous to Phanerozoic warm‐water carbonate platform deposits. In contrast, dolomite from the Walsh, Landrigan and Moonlight Valley Tillites preserves a suite of sedimentary and geochemical characteristics that are distinctly different from Phanerozoic‐like carbonate rocks; they are thin (ca 6 m), laterally persistent units of thinly laminated dolomicrite/dolomicrospar recording δ13C fluctuations from −1‰ to −5‰. These latter features are consistent with a ‘Marinoan‐style cap‐carbonate’ rock described from other Neoproterozoic successions. The similarity and broad distribution of these rocks in Australia, when considered within the context of genetic models suggesting a global oceanographic–atmospheric event, support their use as a lithostratigraphic marker horizon for the start of the Ediacaran Period at ca 635 Ma.  相似文献   

4.
A quartz-absent magnesian paragneiss layer from Mount Sones, in the Archaean Napier complex of Enderby Land, Antarctica, contains the stable divariant FMAS assemblage sapphirine (X Mg=78) — cordierite (X Mg=87) — garnet (X Mg=51) — sillimanite. Rare green spinel (X Mg=53.5, ZnO=2.65wt%) occurs as inclusions mainly within sapphirine, but also within sillimanite and garnet. Late thin coronas of cordierite (X Mg=90.5) mantle sapphirine in contact with extensively exsolved anorthoclase. The mineral textures are interpreted to indicate the former stability of a hypersthene-quartz absent assemblage followed by the development of the FMAS equilibrium assemblage sapphirine-cordierite-garnet-sillimanite (sp, hy, qz) and further divariant reaction involving the consumption of sapphirine. The (sp, hy, qz) assemblage uniquely defines the stable P-T reaction topology appropriate to granulites from the Napier Complex, as this paragenesis is allowed in the grids of Hensen (1971, 1986) but is not possible in other grids which assume the stability of a sapphirine-absent ([sa]) FMAS invariant point involving the phases spinel, garnet, hypersthene, cordierite, sillimanite and quartz. The observed mineral assemblages and textures are consistent with peak metamorphism between the [sp] and [hy] invariant points of Hensen (1971), at temperatures of 930–990° C, followed by cooling on a lower dP/dT trajectory towards the (sp, qz) univariant line. The initial spinel-bearing assemblage was stabilized by Zn and to a lesser extent by Ni and Cr, and hence does not require a marked decrease in temperature and increase in pressure to produce the (sp, hy, qz) assemblage. It is inferred that fO 2 conditions substantially lower than those used in the experiments of Annersten and Seifert (1981) prevailed in the high-grade metamorphism in the Napier Complex.  相似文献   

5.
6.
7.
The eudialyte-group of minerals (EGM) is one of the most important index minerals of the peralkaline (agpaitic) nepheline syenites. They crystallize in varied physico-chemical conditions ranging from the early-magmatic (orthomagmatic) to late-magmatic and even in the post-magmatic (hydrothermal) stage. In India, the only agpaitic nepheline syenite gneisses of the Sushina Hill region contain both late-magmatic as well as hydrothermal eudialytes. Compositionally these are Mn-Nb-Ca rich eudialytes and are comparable to the other EGM occurrences such as Ilímaussaq (Greenland), Tamazeght (Morocco), Mont-Saint Hilaire (Canada) and Pilansberg (South Africa). High Mn content (>6.5 wt.%) for both varieties of the Sushina EGM indicates that they are highly evolved in nature. In terms of the calculated site occupancy, particularly the [M(3)] and [M(2)], the Sushina eudialytes mimic some Pilansberg eudialytes. In addition to the eudialyte, the host nepheline syenite gneiss also contains an unknown Na-Zr-silicate (NZS) which is often found to be replacing both types of eudialytes. Compositionally these NZS can be tentatively represented as Na2Zr2S6O17. These NZS are characterized by much higher Zr, but lower Mn and Nb concentrations compared to the associated eudialytes. Two distinct varieties of eudialyte and NZS indicate subtle changes in the alkalinity during their formations. The formation of the late-magmatic as well as hydrothermal eudialyte essentially took place at somewhat elevated pH conditions. The replacement or alteration of eudialytes by NZS indicates a decreasing pH condition. In terms of the chemical composition the late-magmatic eudialytes can be represented as a solid-solution series between the kentbrooksite-taseqite-aqualite while the hydrothermal eudialyte represents solid-solution between kentbrooksitetaseqite -Ce-zirsilite.  相似文献   

8.
Predicting realistic targets in underexplored regions proves a challenge for mineral explorers. Knowledge-driven prospectivity techniques assist in target prediction, and can significantly reduce the geographic search space to a few locations. The mineral prospectivity of the underexplored west Kimberley region was investigated following interpretation of regional gravity and magnetic data. Emphasis was placed on identifying geological structures that may have importance for the mineral prospectivity of the region. Subsurface structure was constrained through combined gravity and magnetic modelling along three transects. Crustal-scale structures were interpreted and investigated to determine their depth extent. These interpretations and models were linked to tectonic events and mineralization episodes in order to map the distribution of minerally prospective regions using a knowledge-driven mineral systems approach. A suite of evidence layers was created to represent geological components that led to mineralization, and then applied to each mineral system where appropriate. This approach was taken to provide a more objective basis for prospectivity modelling. The mineral systems considered were 1) magmatic Ni-sulphide, 2) carbonate-hosted base metals, 3) orogenic Au, 4) stratiform-hosted base metals and 5) intrusion-related base metals (including Sn–W, Fe-oxide–Cu–Au and Cu–Au porphyry deposits). These analyses suggest that a geologically complex belt in the Kimberley Basin at the boundary to the King Leopold Orogen is prospective for magmatic-related hydrothermal mineral systems (including Ni, Au and Cu). The Lennard Shelf is prospective for carbonate-hosted base metals around a feature known as the 67-mile high, and parts of the King Leopold Orogen are prospective for stratiform-hosted base metals. These results show that knowledge-driven mineral system modelling is effective in identifying prospectivity in regional-scale studies of underexplored areas, as well as drastically reducing the search space for explorers working in the west Kimberley.  相似文献   

9.
Linella avis, an early to middle Neoproterozoic (Tonian to Cryogenian) stromatolite, occurs in the Eliot Range Dolomite, part of the Ruby Plains Group in the Wolfe Basin, east Kimberley. Previously, this dolomite was assigned to the Mesoproterozoic Bungle Bungle Dolomite in the Osmond Basin, which contains a different suite of stromatolites. Linella avis, which also occurs in the Neoproterozoic Bitter Springs Formation of the Amadeus Basin, central Australia, appears to be restricted to rocks aged around 850 to 800 Ma. The presence of L. avis indicates that the Ruby Plains Group is a probable correlative of the Heavitree Quartzite and Bitter Springs Formation, and is probably much younger than the Bungle Bungle Dolomite. If the correlation suggested here is correct, the Wolfe Basin, together with the Amadeus and Ngalia Basins, formed part of the Centralian Superbasin.  相似文献   

10.
We report chemical and mineralogical data for one atmosphere melting experiments conducted on alkalic rocks from the Mt. Erebus volcanic region: DVDP2 basanite, two hawaiites (DVDP2 and a nepheline-bearing variety), and an anorthoclase phonolite. Temperatures between 1,224 and 1,049°C were investigated at fO2~QFM. DVDP2 basanite appears to be an intermediate pressure liquid or a cumulate, because only olivine coexists with melt from above 1,224–1,160°C. High-Ca pyroxene joins olivine in the crystallization sequence at 1,138°C. These minerals are joined by plagioclase at a temperature between 1,120 and 1,104°C. In contrast, DVDP2 hawaiite appears to be relatively evolved, because it is multiply saturated with olivine, plagioclase, and high-Ca pyroxene near its liquidus (between 1,120 and 1,104°C). Plagioclase crystallizes in the Ne-hawaiite by 1,160°C followed by olivine below 1,120°C. The liquidus of anorthoclase phonolite is between the lowest temperatures investigated, 1,089 and 1,049°C, and plagioclase is the liquidus mineral. Our results indicate that DVDP2 hawaiite can be derived from a DVDP2 basanitic parental magma by crystal fractionation at low pressures, that the nepheline hawaiite is an olivine cumulate, and that the liquids parental to the anorthoclase phonolite represent the end products of crystal fractionation. They also allow us to illustrate how the Ti-content of pyroxene may be used as a petrogenetic indicator of processes and events in the evolution of the Erebus volcanic system.  相似文献   

11.
在俯冲带中,菱镁矿相比于其他碳酸盐矿物会在更高的温度压力环境下稳定存在,常被认为是地球深部碳循环的主要载体,其电学性质的研究对俯冲带及地球深部的电性结构具有重要的意义。本文在YJ-3000t高温高压设备上利用Solartron-1260阻抗/增益-相位分析仪,在1~3 GPa和773~1173 K条件下,对天然菱镁矿的电导率进行了原位测量。实验结果表明,在实验条件下,天然菱镁矿的电导率在10-2~10-7 S/m范围内,菱镁矿的电导率对温度有很强的依赖性,随着温度的升高,电导率增大,电导率与压力的关系呈正相关,随着压力的升高而增强。结合前人的研究成果及样品电导率随温度、压力的效应和活化能,可推断天然菱镁矿导电机制为大极化子导电。  相似文献   

12.
Hwang  P.  Taylor  W. R.  Rocky  N. M. S.  Ramsay  R. R. 《Mineralogy and Petrology》1994,51(2-4):195-226
Summary The Metters Bore No. 1 lamproite (MB1) is a small unexposed pipe located in the Calwynyardah field of the Miocene West Kimberley lamproite province. Microdiamonds have been recovered from bulk sampling of the pipe but no macrodiamonds (>0.8 mm) have been found. The pipe contains both volcaniclastic and magmatic (i.e. non-fragmental, extrusive-to-hypabyssal facies) lamproite. The latter rock is dominantly olivine-leucite-diopside lamproite and comprises phenocrysts and microphenocrysts of diopside, altered olivine ( Fo91), and rare phlogopite, together with phenocrysts and glomeroporphyritic aggregates of altered leucite. These are set in an altered, fine-grained to glassy groundmass including diopside, leucite, priderite, apatite, less abundant chrome-spine', perovskite, interstitial richterite with minor calcic amphibole, ilmenite, sphene and wadeite. Mineral compositions are complex and variable: for example: five compositionally distinct fields can be recognizedamong the diopsides, and three among the phlogopites. The Ti-rich, Al-poor diopsides, Ti-F-rich, Al-poor phlogopites, and potassium titanian richterites all have apparent tetrahedral site deficiencies which can best be explained by tetrahedral substitution of Ti4+ and/or Mg2+; no substitution of Fe3+ is indicated. Three major types of spinel are recognized: olivine-included titaniferous magnesiochromite (TMC), xenocrystic aluminous magnesiochromite (AMC) and leucite-included pleonaste. Spinel-olivine-melt oxygen barometry indicates that the TMC spine's crystallized from evolving lamproite magma under low oxygen fugacity conditions (MW to IW). Manganiferous groundmass ilmenite has low calculated Fe2O3 (< 1 wt%), also consistent with reduced conditions. The maintenance of a low oxidation state during magmatic crystallization, a feature shared with the Argyle olivine-lamproite, is considered a significant factor in preservation of the MB1 microdiamond population. Xenocrystic minerals encountered in heavy mineral concentrates (HMC) indicate that the MB1 lamproite sampled upper mantle spinel ±garnet lherzolite from >60 km depth and crustal mafic rocks. Geochemically, MB1 is typical of West Kimberley leucite-lamproites, which are characterized by high TiO2 (> 4 wt%), low CaO (< 5 wt%), MgO < 10wt%, and enrichment in incompatible elements (Rb, Sr, Ba, LREE, etc.). Although MB1 is an olivine-bearing lamproite, it has source-related geochemical features, e.g. mantle-normalized Sc/V and Zr/Nb ratios of < 0.75 and > 0.6, respectively, that are similar to other West Kimberley leucite-lamproites and distinct from olivine-lamproites. Petrogenetically, the bulk composition and low magmatic oxidation state of MB1 supports an origin by melting of phlogopite-bearing harzburgitic source under reduced fO2 (< MW) conditions.
Mineralogie, geochemie und petrogenese der lamproit-pipe Metters Bore No. 1, Kalwynyardah Field, West Kimberley Provinz, West-Australien
Zusammenfassung Der Lamproit Metters Bore No. 1 (MB1) ist eine kleine, nicht an der Oberfläche aufgeschlossene Pipe im Kalwynyardah Gebiet der miozänen Lamproit-Provinz von West Kimberley. Mikrodiamanten sind bei der Untersuchung von Proben aus der Pipe gefunden worden, jedoch keine Makrodiamanten (> 0.8 mm). Die Pipe enthält sowohl vulkanoklastischen wie magmatischen Lamproit (nicht-fragmentierte extrusive bis hypabyssische Fazies). Bei dem magmatischen lamproit handeltes sich um einen Olivin-Leuzit-Diopsid-Lamproit mit Kristallen und Mikrokristallen von Diopsid, umgewandeltem Olivin ( Fo91), seltener Phlogopit, zusammen mit Kristallen und glomeroporphyritischen Aggregaten von umgewandeltem Leuzit. Diese sitzen in einer umgewandelten, feinkörnigen bis glasigen Grundmasse mit Diopsid, Leuzit, Priderit, Apatit, seltener Chromspinell, Perovskit, Richterit mit geringen Mengen an Kalziumamphibol, Ilmenit, Titanit und Wadeit. Die Mineralzusammensetzungen sind komplex und variabel: so können z.B. fünf der Zusammensetzung nach eindeutig definierte Felder für die Diopside nachgewiesen werden und drei solche für die Phlogopite. Die Ti-reichen Al-armen Diopside, Ti-F-reiche Al-arme Phlogopite und Kalium-Titan-Richterite haben alle reduzierte Besetzungen von Tetraederstellen, die am besten durch tetraedrische Substitution von Ti4+ und/oder Mg` erklärt werden können. Es gibt keine Hinweise für Substition von Fe3+. Drei Haupttypen von Spinellen kommen vor: Titan-führender Magnesiochromit (TMC) als Einschlüsse in Olivin, aluminiumführender Magnesiochromit (AMC) und Pleonast, der in Leuzit eingeschlossen ist. Sauerstoffbarometrie (Spinell-Olivin-Schmelze) zeigt, daß die TMC Spinelle von einem fraktionierten lamproitischen Magma bei niedriger Sauerstofffugazität (MW bis IW) kristallisiert sind. Manganführender Ilmenit der Grundmasse hat niedrige berechnete Fe2O3 Gehalte (< 1 %), und auch das entspricht reduzierenden Bedingungen. Die Erhaltung eines niedrigen Oxydationsstatus während der magmatischen Kristallisation ist eine Eigenschaft, die auch im Olivin-Lamproit der Argyle Pipe zu beobachten ist. Dies wird als ein signifikanter Faktor für den Erhalt der Mikrodiamanten in MBI gesehen. Xenokristalle die in Schwermineral-Konzentraten (HMC) vorkommen, weisen darauf hin, daß der MB1 Lamproit Material des oberen Mantels (Spinell ± Granatlherzolit) aus mehr als 60 km Tiefe, sowie mafische Gesteine der Kruste aufgenommen hat. Geochemisch gesehen ist MB1 typisch für die Leuzit-Lamproite von West Kimberley, welche durch hohe TiO2 (> 4 wt.%), niedrige CaO (< 5 wt.%), MgO (< 10 wt.%) und Anreicherung von inkompatiblen Elementen (Rb, Sr, Ba, LSEE, etc.) charakterisiert werden. Obwohl MB1 ein Olivin-führender Lamproit ist, zeigt er geochemische Eigenschaften, wie Mantel-normalisierte Sc/V und Zr/Nb Verhältnisse von < 0.75 und > als 0.6, die ähnlich anderen Leuzit-Lamproiten von West Kimberley sind und sich von Olivin-Lamproiten unterscheiden. Petrogenetisch gesehen weisen sowohl die Gesamtzusammensetzung als auch der niedrige magmatische Oxydationsstatus von MBI auf eine genese durch Aufschmelzen von Phlogopit-führendem Harzburgit unter reduzierenden f02 (< MW) Bedingungen hin.


Deceased

With 12 Figures  相似文献   

13.
Buhlmann et al. (Can J Earth Sci 37: 1629–1650, 2000) studied the minettes and xenoliths from the Milk River area of southern Alberta, Canada. Based on previous work, they hypothesized that the minettes were derived from a source containing phlogopite?+?clinopyroxene?±?olivine, at pressures ≥1.7?GPa. To test this hypothesis, liquidus experiments were performed on a primitive minette between 1.33 and 2.21?GPa and between 1,300 and 1,400?°C to constrain the mineralogy of its source region. We found a multiple saturation point along the liquidus at 1.77 GPa and 1,350?°C, where the liquid coexists with orthopyroxene and olivine. Neither phlogopite nor clinopyroxene were found to be liquidus phases, which is inconsistent with Buhlmann et al.’s hypothesis. We suggest that our minette is not primary, but had re-equilibrated with harzburgitic mantle subsequent to formation. In such a scenario, partial melting of a veined source containing mica and clinopyroxene occurred at or near the base of the Wyoming craton (~200?km). Minimal heating or the introduction of hydrous fluids into the source would be required to induce partial melting. Rapid ascent rates, coupled with slow cooling rates, of the “primary minette magma” would preserve the high temperature observed in our experiments. At ~58?km, our “primary minette magma” likely stalled and re-equilibrated with the harzburgite surroundings.  相似文献   

14.
New specimens of the enigmatic Ediacara-type fossil Palaeopascichnus have been identified from the upper part of the Neoproterozoic Ranford Formation in the Kimberley region, northwest Australia. New material is morphologically similar to Palaeopascichnus and represents the largest species of this genus. They resemble the present-day xenophyophore protists in chamber morphology and growth patterns, supporting the interpretation that Palaeopascichnus is possibly a xenophyophore body fossil rather than a trace fossil. Stratigraphic correlation reveals that the new Palaeopascichnus specimens are preserved in the interglacial successions between the Landrigan/Marinoan and Egan/Ediacaran glaciations. If correlation with the early Ediacaran formations of South Australia is accepted, this represents the earliest known identifiable member of the Ediacara biota. New fossil record fills the evolutionary gap between the Cryogenian and Ediacaran animal assemblages and well-known Ediacaran biota. The new Palaeopascichnus specimens represent the first record of Ediacara-type fossils in Kimberley, and suggest the probability that additional Ediacaran fossils may be found in northwestern Australia.  相似文献   

15.
Hydrothermal simulations are used to provide insight into the subsurface thermal regime of the Perth metropolitan area (PMA) in Western Australia. High average permeabilities and estimated fluid flow rates in shallow aquifers of the PMA suggest that advection and convection may occur in these aquifers. These processes are simulated, using a new geological model of the PMA to constrain the geometry of aquifers, aquitards and faults. The results show that advection has a strong influence on subsurface temperature, especially in the north of the PMA, where aquifer recharge creates an area of anomalously low temperature. Convection may be important, depending on the permeability of the Yarragadee Aquifer. If convection occurs, it creates thermal highs and lows with a spacing of approximately 5 km. Some of these thermal anomalies migrate over geological time due to coupling between advection and convection, but they are stationary on human timescales. Fault permeability influences the pattern of convection. Advection and convection cause variations in the geothermal gradient which cannot be predicted by conductive models; therefore, these processes should be considered in any model that is used for assessment of geothermal resources in the PMA.  相似文献   

16.
Sulphide-bearing diamonds recovered from the ∼20 Ma Ellendale 4 and 9 lamproite pipes in north-western Australia were investigated to determine the nitrogen aggregation state of the diamonds and Re-Os isotope geochemistry of the sulphide inclusions. The majority of diamond studies have been based on diamonds formed in the sub-continental lithospheric mantle (SCLM) below stable cratons, whereas the Ellendale lamproites intrude the King Leopold Orogen, south of the Kimberley craton. The sulphide inclusions consist of pyrrhotite-pentlandite-chalcopyrite assemblages, and can be divided into peridotitic and eclogitic parageneses on the basis of their Ni and Os contents. A lherzolitic paragenesis for the high-Ni sulphide inclusions is suggested from their Re and Os concentrations. Regression analysis of the Re-Os isotope data for the lherzolitic sulphides yields an age of 1426 ± 130 Ma, with an initial 187Os/188Os ratio of 0.1042 ± 0.0034. The upper limit of the uncertainty on the 187Os/188Os initial ratio gives a Re depletion age of 2.96 Ga, indicating the presence of SCLM beneath Ellendale since at least the Mesoarchaean, with the lherzolitic diamond-forming event much younger and unrelated to the craton keel stabilisation. The nitrogen aggregation state of the diamonds and calculated mantle residence temperatures suggest an origin and storage of the Ellendale diamonds in a stable cratonic SCLM, consistent with the King Leopold Orogen being cratonised by about 1.8 Ga. The diamonds do not show evidence for pervasive deformation or platelet degradation, which suggests that the diamonds had a relatively undisturbed 1.4 billion year mantle storage history.  相似文献   

17.
Calcic diopside megacrysts, called Granny Smith nodules, in the Kimberley area and Jagersfontein kimberlites are sheared, commonly contain lenticles of ilmenite and intergrowths of phlogopite, and have a distinctive apple-green color. These diopsides have Ca(Ca + Mg) > 0.45, Mg(Mg + Fe) > 0.90, 0.2?0.4 wt% TiO2 and 0.5–3 wt% Cr2O3. They have Na > (Al + Cr), in contrast to diopsides in peridotite xenoliths and those that form subcalcic discrete nodules, but in this respect are similar to diopsides in amphibole-bearing MARID nodules and mica-rich glimmerites. Granny Smith megacrysts are not cognate (Kramers, 1979); their parental magmas (in an igneous or metasomatic sense) may have been parts of the spectrum between kimberlites and lamproites.  相似文献   

18.
East Othris area consists of scattered ophiolitic units, as well as ophiolitic mélange occurrences, which encompass gabbroic rocks. These rocks have been affected by low-grade ocean floor metamorphism (T?<?350°C and P?<?8?kbar). Based on their petrography, mineral chemistry and geochemistry gabbroic rocks have been distinguished into gabbros and diorites, with the latter being divided into two groups. Gabbros seem to have been formed from moderate to high partial melting degrees (~8–25%) of a highly depleted mantle source, while group (1) diorites have been differentiated after variable fractionation processes (up to 30%). Group (2) diorites seem to have been derived from low partial melting degrees (~3%) of a fertile or moderately depleted mantle source and with extensive fractionation processes (~50%). Geochemical results suggest that partial melting processes occurred at relatively shallow depths, in the plagioclase-spinel stability field, while amphibole chemistry data indicate shallow level crystallization. Chondrite and PM-normalized patterns, Th/Yb, and Nb/Th ratios as well as mineral chemistry analyses show that gabbros and group (1) diorites (with relatively low PM-normalized Nb and Ta values and negative Ti anomalies) suggest subduction processes, while group (2) diorites are MORB or BAB related. Some gabbros have been characterised as high-Mg, being compositionally similar to picrites or boninites. Variability in extent of partial melting of the mantle source and the different geotectonic environment affinities are consistent with a supra-subduction zone (SSZ) origin of the east Othris ophiolites. The fact that IAT related rocks are more abundant in east rather than in west Othris may possibly be explained by a slab rollback model retreating to the east within the Pindos oceanic basin.  相似文献   

19.
Petrochemical and Rb-Sr, K-Ar and Sm-Nd isotopic data presented for the Mitterteich granite provide information on whole rock and mineral compositional characteristics, intrusion and cooling history, and protolith nature and put further constraints on the Variscan magmatic evolution in north-east Bavaria.The compositional characteristics classify the Mitterteich granite as a peraluminous (monzo-)granite (SiO2 67.3–73.5 wt.% ). Values for K2O/Na2O (> 1.2 and Al2O3/(CaO + N2O + K2O) (>1.1) are in the range of S-type granites. The rare earth elements show fractionated chondrite-normalized patterns (La N /Yb N =24–19) with negative Eu anomalies (Eu N /Eu N *=0.35–0.19). The micas have restricted ranges of major element composition, but reveal notable variations in trace element concentrations. Different biotite fractions of single specimens show a trend to lower concentrations of compatible elements in the finer fraction which can be explained as a result of asynchronous growth during the fractionation process. The PT conditions of crystallization of the magma based on muscovite and biotite is 600–640°C at 3 kbar. Regression of the whole rock samples gives an isochron corresponding to a 87Rb-87Sr age of 310 ± 7 Ma, initial 87Sr/86Sr of 0.7104±0.0010 (2 errors) and MSWD =0.03. Muscovite and biotite yield concordant K-Ar ages between 310 and 308 Ma, indicating a fast cooling rate of the granite intrusion. Nd T310values average –4.2±1.0. Nd model ages of 1.4 Ga suggest a source region of mid-Proterozoic age.The Rb-Sr isochron age and initial Sr ratio of the Mitterteich granite are indistinguishable from those of the adjacent Falkenberg granite, establishing a genetic link. However, the K-Ar mica ages suggest that the Mitterteich granite must have undergone a faster uplift or cooling history than Falkenberg. Confronted with the geochronological record of granite emplacement in north-east Bavaria, the new results substantiate the view of three key periods of magmatic activity around 330–325, 315–305 and 290 Ma.  相似文献   

20.
The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left in open nomenclature because of uncertainties regarding test architecture. All Miocene taxa are recorded from single specimens apart from the 27 assigned to Brissus. Schizaster sp. cf. S. americanus (Clark) is compared to a species from the Oligocene of the south‐east USA. Brissus sp. cf. B. oblongus is close in gross morphology to a taxon from the Miocene of Malta. Leodia sexiesperforata is identified from fragments with confidence, being the only extant Antillean sand dollar with elongate ambulacral petals that is limited to carbonate substrates. The Miocene echinoids of Grand Cayman, although of limited diversity, are mainly comprised of genera common in comparable mid‐Cenozoic carbonate environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号