首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transmission electron microscope study of intracrystalline boundaries between two perthites of markedly different composition in composite crystals, one a tenary mesoperthite (Or26Ab52An22, initially a homogeneous potassian monalbite) the other a more potassic cryptoperthite (Or61Ab33An6, initially a homogeneous sodian sanidine), shows that the two perthites are in nearly parallel intergrowth. Most boundaries examined were of (hkO) type; (010) boundaries are straight, whereas other (hkO) boundaries are curved or stepped. Exsolution occurred first in the potassian monalbite (mesoperthite) and was unaffected by the boundary. Subsequent exsolution in the sodian sanidine (cryptoperthite) was affected by the boundary, but for up to only a few micrometers. Exsolution occurred by heterogeneous nucleation and growth of oligoclase on and from the intracrystalline boundary. At almost the same time the rest of the volume of sanidine exsolved by spinodal decomposition. 1–2 μm from the boundary in the intervening K-rich matrix of the sodian sanidine, further exsolution occurred by homogeneous nucleation. Time — temperature — transition curves for continuous cooling have been devised to account for the unusual complexity of the exsolution texture. Except in such exceptional circumstances as the example studied, the initial exsolution in high-temperature alkali feldspars of intermediate composition, unlike other minerals, probably does not occur by nucleation, but only by spinodal decomposition.  相似文献   

2.
Eight feldspar phases have been distinguished within individual alkali feldspar primocrysts in laminated syenite members of the layered syenite series of the Klokken intrusion. The processes leading to the formation of the first four phases have been described previously. The feldspars crystallized as homogeneous sodian sanidine and exsolved by spinodal decomposition, between 750 and 600 °C, depending on bulk composition, to give fully coherent, strain-controlled braid cryptoperthites with sub-μm periodicities. Below ~500 °C, in the microcline field, these underwent a process of partial mutual replacement in a deuteric fluid, producing coarse (up to mm scale), turbid, incoherent patch perthites. We here describe exsolution and replacement processes that occurred after patch perthite formation. Both Or- and Ab-rich patches underwent a new phase of coherent exsolution by volume diffusion. Or-rich patches began to exsolve albite lamellae by coherent nucleation in the range 460–340 °C, depending on patch composition, leading to film perthite with ≤1 μm periodicities. Below ~300 °C, misfit dislocation loops formed, which were subsequently enlarged to nanotunnels. Ab-rich patches (bulk composition ~Ab91Or1An8), in one sample, exsolved giving peristerite, with one strong modulation with a periodicity of ~17 nm and a pervasive tweed microtexture. The Ab-rich patches formed with metastable disorder below the peristerite solvus and intersected the peristerite conditional spinodal at ~450 °C. This is the first time peristerite has been imaged using TEM within any perthite, and the first time peristerite has been found in a relatively rapidly cooled geological environment. The lamellar periodicities of film perthite and peristerite are consistent with experimentally determined diffusion coefficients and a calculated cooling history of the intrusion. All the preceding textures were in places affected by a phase of replacement correlating with regions of extreme optical turbidity. We term this material ultra porous late feldspar (UPLF). It is composed predominantly of regions of microporous very Or-rich feldspar (mean Ab2.5Or97.4An0.1) associated with very pure porous albite (Ab97.0Or1.6An1.4) implying replacement below 170–90 °C, depending on degree of order. In TEM, UPLF has complex, irregular diffraction contrast similar to that previously associated with low-temperature albitization and diagenetic overgrowths. Replacement by UPLF seems to have been piecemeal in character. Ghost-like textural pseudomorphs of both braid and film parents occur. Formation of patch perthite, film perthite and peristerite occurred 104–105 year after emplacement, but there are no microtextural constraints on the age of UPLF formation.  相似文献   

3.
Coexisting feldspars from across 2,000 km2 of the granulite facies Oaxacan Complex, southern Mexico exhibit variable amounts of solid solution from nearly binary (Ab-An and Ab-Or) to substantially ternary (Ab-An-Or). Reintegrated analyses of 21 coarsely exsolved perthite (AF)-plagioclase (PL) pairs yield AF=Or30–63 Ab30–56An2–15 and PL=Or1–2Ab70–84An11–28. These data have been used to test existing two feldspar geothermometers for this extended composition range.For all compositions, temperature estimates show relatively little spread in value (660° to 795° C, 7 kbar) using the Haselton et al. (1983) calibration (HHHR). These temperatures are in fair agreement with estimates of 750±40° C for feldspar pairs with nearly binary compositions using the Stormer (1975) thermometer (STO). However, STO temperatures increase significantly (to 990° C) with increasing ternary solid solution in AF, suggesting that thermometers derived for binary systems are inaccurate for ternary compositions. Isotherms drawn from HHHR which take into account variable anorthite solution in alkali feldspar show that estimated temperature decreased by 50–100° C for each 5 mole percent anorthite in alkali feldspar.Experimentally determined solvus relations (Seck 1971) require feldspars with significant ternary solid solution to have crystallized or to have equilibrated at higher temperature than feldspars with more binary compositions. However, petrographic and field relations of ternary and binary feldspars in the Oaxacan Complex suggest they were all equilibrated at similar metamorphic pressures and temperatures and do not support a model where ternary feldspars have preserved higher premetamorphic temperatures. The composition of coexisting feldspars from other Precambrian granulite-facies terranes are also inconsistent with Seck's (1971) results. Hence, thermometers which fit Seck's solvus relations may not yield accurate temperatures in high grade metamorphic terranes. Parallel tie-lines for ternary and binary feldspars in the Oaxacan Complex and the consistency of inferred temperatures (HHHR) for many granulite terranes suggest that estimation of temperature using tie-line slopes rather than solvus width may yield more accurate results for these samples.Peak metamorphic conditions in the Oaxacan Complex are inferred to have been 730±50° C, 7±1 kbar. Pressure estimates from four garnet-plagioclase barometers show good agreement. Results of feldspar thermometry are consistent with diopside-forsterite equilibria in marbles which restrict T=720–765° C at P=7 kbar.  相似文献   

4.
Transmission electron microscope data on the morphology of exsolution lamellae, the nature of the potassium feldspar and the development of dislocations at lamellar interfaces in coherent cryptoperthites and fine microperthites are reviewed. Dislocations have been reported previously in only two crystals, and periodic dislocations noted in only one, an Or-rich microperthite. Periodic dislocations (spacing 100–150 nm) are here described from a ternary mesoperthite (Or26 Ab52 An22). Small crystallites (<30 nm) of other phases have sometimes nucleated on the dislocations. The 020 lattice fringes of the feldspar phases have been imaged; the difference in 020 spacings can be almost entirely accommodated by the regular dislocations, so that the boundaries may be termed nearlyperfectly semicoherent.Dislocations have been found so far only in cryptoperthites with lens-shaped or straight lamellae, either in Or-rich feldspars or in Ab-rich ternary ones. In intermediate compositions with wavy or zig-zag albite lamellae, or lozengeshaped albite areas (braid microperthites) dislocations have not been observed. Strain reduction in intermediate compositions occurs by migration of lamellar interfaces from (¯601) to near (¯6¯61) as microcline forms in the diagonal association. In Ab-rich ternary feldspars the relatively high Ancontent blocks interface migration, and strain reduction occurs by nucleation of dislocations; the Or-rich feldspar phase is tweed orthoclase. In Or-rich bulk compositions the low volume of albite exerts insufficient stress to promote microcline formation, and tweed orthoclase develops. Interfaces do not migrate, and dislocations again develop. Fields in which different potassium feldspar polymorphs occur and in which the different exsolution textures are developed are summarized on a ternary diagram.  相似文献   

5.
The Storm King granite at Bear Mountain, New York contains coarse alkali feldspar mesoperthite. The microstructure of these perthites grades continuously from lamellae to isolated blebs. The K rich phase in all samples has a nerely constant composition (Õr97Ab3), but the Na-rich phase ranges from An3.8 (lamellae) to An21 (blebs). It is suggested that the more calcium-rich feldspars exsolved at a higher temperature and thus experienced a longer time at higher temperature, during which the microstructure became more bleby or spherical in response to minimization of the interfacial energy. Lack of perfect correlation of the microstructure with bulk composition, as well as variation in the Al/Si ordering, may be due to additional factors, of which water activity or concentration is the most likely.  相似文献   

6.
 The extremely young (2.5 Ma) I-type Eldzhurtinskiy granite complex (Central Caucasus) is uniform with respect to modal composition, major and trace element chemistries of bulk rocks and mineral phases. In contrast, it reveals two types of alkali feldspar megacrysts differing in tetrahedral Al-content (2t1) and exsolution microtextures: 1. Alkali feldspar megacrysts (Or70An2Ab28) from the top of the body consist of ideally coherent intergrowths of fine-scale regular Or- and Ab-rich lamellae. The exsolved K-feldspar host is monoclinic (2t1=0.7), the exsolved Na-rich phase consists of Albite- and/or Pericline-twinned albite. 2. Megacrysts from greater depths have the same bulk composition, but the exsolved Ab-rich phase occurs in the form of optically visible, broad lamellae and patches of low albite. In addition, the K-rich host yields a higher degree of (Al, Si) ordering (2t1=0.8). The evolution of the distinct types of megacrysts reflects differences in the cooling history within the upper and lower part of the granite body. The occurrence of the coherent lamellae in the megacrysts from the top of the body is attributed to exsolution under dry conditions during fast cooling, whereas coarsening of lamellae and formation of albite patches in the megacrysts from the lower part are caused by fluid-feldspar interaction. The transition zone in the body between the two types of megacrysts is sharp (in a depth interval of 100–200 m) and not related to shear zones. Received: 12 June 1995 / Accepted: 29 January 1996  相似文献   

7.
An antiperthite feldspar (composition of the main part An27.2 Ab69.2Or3.6) has been studied by x-rays and transmission electron microscopy. Complex twinning and exsolution on very fine scale are described for the first time for this compositional range. Evidence is given for a distinct intermediate region between the plagioclase and the potash feldspar. The formation of the crystal probably involves partial replacement, at least two step exsolution, and transformation of monoclinic plagioclase to triclinic plagioclase.  相似文献   

8.
河北武安坦岭多斑斜长斑岩的成因:冻结岩浆房活化机制   总被引:5,自引:3,他引:2  
流变学实验表明,当岩浆中晶体体积分数达到约50vol%时,岩浆体实际上处于冻结状态,不再具有整体迁移的能力。但在自然界中仍存在含大量斑晶的浅成火成岩和火山岩。因此,富晶体岩浆的上升过程和侵位机制是近年来地球科学领域关注的热点之一。目前,冻结岩浆房的活化机制主要有二种:升温活化机制和流体活化机制。河北武安坦岭地区新发现的多斑斜长斑岩为揭示冻结岩浆房的活化提供了契机。野外观察和晶体粒度分布(CSD)分析表明,坦岭斜长斑岩中斜长石斑晶高达70vol%,基质为显微晶质结构。斜长石斑晶粒径分布均一,大小约为3.1×1.7mm;显微镜观察和背散射图像揭示,斜长石斑晶具环带结构,由宽广的斜长石核部+宽度可变的条纹长石边部组成,且无熔蚀现象;电子探针成分剖面分析表明,斑晶核部成分为更长石(An_(27)Ab_(71)Or_2),幔部为更长石(An_(13)Ab_(83)Or_4),边部为条纹长石。边部条纹长石的成分有一定变化,从内侧到外侧,主晶钠长石成分由Ab_(53)Or_(47)变为Ab_(99)Or_1,客晶钾长石成分由Ab_(48)Or_(51)变为Ab3Or97。斑晶斜长石核部存在细长条状或斑点状钾长石,且越靠近中心,钾长石斑点的数量越少。这些特点表明,边部条纹长石为交代成因。稀土和微量元素分析则显示,边部条纹长石具弱正Eu异常,相对富集LREE和K、Rb、Ba、Sr等大离子亲石元素,亏损Th、Zr、Nb的特点。CSD相关图解及以上特征表明,斜长石斑晶形成于稳定,封闭的结晶环境,并受到晚期碱交代作用的改造。基质主要由微粒钙质角闪石,条纹长石,石英,钾长石和钠长石组成,含少量自形-半自形磁铁矿和钛铁矿、磷灰石、榍石、金红石和锆石等11种矿物组成。11种矿物相和结构特征暗示基质形成于极端不稳定的结晶环境,与斜长石斑晶形成条件鲜明对照。根据基质的矿物组成,推测形成基质的岩浆具有富含K、Na、Fe、Si和挥发分的特征。这种特征与上述关于条纹长石环边形成条件的判断一致。据此,本文认为:产生斜长石斑晶的岩浆曾经在地壳深部作过长时间滞留,导致了斜长石的稳定结晶,增加了岩浆的粘度和密度,使岩浆处于冻结状态;富碱高铁熔体-流体流的注入大幅降低了岩浆的总粘度,并提高了岩浆的浮力,从而促使冻结岩浆房迅速活化和上升侵位;同时,富碱高铁熔体-流体流强烈交代了先存的斜长石斑晶,使其边部形成条纹长石;这种熔体-流体流则在快速排气,冷却过程中迅速结晶,形成了具有不平衡矿物组合的显微晶质基质。在岩浆侵入体较深部位,富碱高铁熔体-流体经历了很缓慢的固结过程,而相分离产生的流体有可能萃取携带岩浆中的铁质,形成富Fe流体流,后者可能对区内"铁矿浆"型铁矿的形成具有重要的贡献。  相似文献   

9.
Cordierite–quartz and plagioclase–quartz intergrowths in a paragneiss from northern Labrador (the Tasiuyak Gneiss) were studied using SEM, STEM and TEM. The gneiss experienced granulite facies conditions and partial melting during both regional and, subsequently, during contact metamorphism. The microstructures examined all results from the contact metamorphism. Cordierite–quartz intergrowths occur on coarse and fine scales. The former sometimes exist as a ‘geometric’ intergrowth in which the interface between cordierite and quartz appears planar at the resolution of the optical microscope and SEM. The latter exists in several microstructural variants. Plagioclase is present as a minor component of the intergrowth in some examples of both the coarse and fine intergrowth. Grain boundaries in cordierite–quartz intergrowths are occupied by amorphous material or a mixture of amorphous material and chlorite. Cordierite and quartz are terminated by crystal faces in contact with amorphous material. Chlorite is sometimes found on cordierite surfaces and penetrating into cordierite grains along defects. Quartz contains (former) fluid inclusions 10–20 nm in maximum dimension. The presence of planar interfaces between cordierite and the amorphous phase is reminiscent of those between crystals and glass in volcanic rocks, but in the absence of compelling evidence that the amorphous material represents former melt, it is interpreted as a reaction product of cordierite. Plagioclase–quartz intergrowths occur in a number of microstructural variants and are commonly associated with cordierite–quartz intergrowths. The plagioclase–quartz intergrowths display simple, non‐planar interfaces between plagioclase and quartz. Quartz contains (former) fluid inclusions of dimensions similar to those observed in cordierite–quartz intergrowths. The boundary between quartz and enclosing K‐feldspar is cuspate, with quartz cusps penetrating a few tens of nanometres into K‐feldspar, commonly along defects in K‐feldspar and sometimes with very low dihedral angles at their tips. This cuspate microstructure is interpreted as melt pseudomorphs. The plagioclase–quartz intergrowths share some features with myrmekite, but differ in some respects: the composition of the plagioclase (An37Ab62Or1–An38Ab61Or1); the association with cordierite–quartz intergrowths; and microstructures that are atypical of myrmekite (e.g. quartz vermicules shared with cordierite–quartz intergrowths). It is inferred that the plagioclase–quartz intergrowths may have formed from, or in the presence of, melt. Inferred melt‐related microstructures preserved on the nanometre scale suggest that melt on grain boundaries was more pervasive than is evident from light optical and SEM observations.  相似文献   

10.
We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the “andesitic” material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca44Mg46Fe10) and Na plagioclase (Or2.5Ab90.0An7.5 to Or3.5Ab96.1An0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called “crystal mush.” The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or92.7Ab7.2An0.1 to Or87.3Ab11.0An1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca1.3Mg80.5Fe17.8 to Ca3.1Mg78.1Fe18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are present within such K-feldspar regions. Some enrichments of the albite component have been detected at the end of curved elongated nodules of K feldspar intruded into the mafic silicates. The textural relationships suggest that a K-rich melt was present. A K-rich melt is neither the first melt of a chondritic system nor a differentiation product of a Na-rich partial melt of chondritic material. The K-rich material may have originated as a fluid phase that leached K from surrounding materials and segregated by a mechanism similar to that proposed for the Na-rich inclusions.  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987113000893   总被引:1,自引:0,他引:1  
Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis.  相似文献   

12.
A single-crystal x-ray study of alkali feldspars of bulk composition Or39–43 and Or62–64, from a single cooling unit of Battleship Rock Tuff, northern New Mexico, reveals a trend of decreasing degree of exsolution, from the non-welded zone toward the densely welded center of the cooling unit. Crystals of bulk composition Or62–64 range from cryptoperthite with both phases monoclinic in the nonwelded zone to virtually unexsolved crystals in the welded center of the cooling unit. Crystals of bulk composition Or39–43 include crytpoperthites with both phases monoclinic, and cryptoperthites with Pericline-twinned sodic lamellae, with * of the sodic phase increasing systematically from 87.3° in the nonwelded zone to 90° in the densely welded zone. Composition estimates based on unitcell parameters show decreasing compositional differences between coexisting lamellae toward the welded zone. The feldspar crystals studied are interpreted to be xenocrysts, which had undergone exsolution prior to incorporation in the erupting magma, and which were then partially homogenized during emplacement and post-emplacement cooling. The data indicate a maximum re-equilibration temperature of the feldspars of about 500° C, and a more rapid cooling of the tuff than calculated for simple conduction in a uniform slab.  相似文献   

13.
The textural relationships and geochemistry of feldspars from least-altered to sericite-hematite altered and mineralised ~ 1.595 Ga Roxby Downs Granite (RDG) at Olympic Dam, South Australia, were examined. The sample suite is representative of RDG both distal (> 5 km) and proximal (< 1 km) to the hydrothermal breccias of the Olympic Dam Breccia Complex (ODBC), which host Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam. Microscopic observations and quantitative analyses indicate that a range of feldspar reactions have taken place within the RDG hosting the Olympic Dam deposit. An early phase of igneous plagioclase (~ An27–34) is recognised, along with a more abundant, less-calcic plagioclase (~ An12–20) both displaying rapakivi and anti-rapakivi textures with alkali feldspar. Alkali feldspars (~ Or55Ab43An2) record post-magmatic evolution from cryptoperthite to patch perthite. Subsequent patch perthite is overprinted by highly porous, near end-member albite and K-feldspar, while plagioclase undergoes replacement by albite + sericite ± Ba-rich K-feldspar. In sericite-hematite altered and mineralised RDG along the margin of the ODBC, sericite replaces all plagioclase, whereas red-stained, Fe-rich K-feldspar persists. Sulphide-uranium-rare earth element mineralisation is observed in association with hydrothermal feldspars, and increases in abundance with proximity to the orebody. Petrographic observations and whole-rock geochemistry illustrate the transformation of plagioclase and alkali feldspar from igneous to hydrothermal processes, and indicate that hydrothermal albite and K-feldspar formed within the RDG without the need for an external source of alkalis. Feldspar geothermometry indicates a minimum crystallisation temperature of 765 °C at 2.2 kbar for alkali feldspar (pressure estimate obtained using plagioclase-amphibole geobarometry) followed by a range of lower temperature transformations. Late-stage magma mixing/contamination is postulated from supportive temperature and pressure estimates along with feldspar and mafic mineral relationships.  相似文献   

14.
Scapolite solid solution has been synthesized at 750°C and 4 kbar and is stable relative to plagioclase + calcite + halite over the range of plagioclase compositions from Ab85An15 to Ab70An30, although albite + halite is stable relative to marialite, Na4Al3Si9O24Cl, and anorthite + calcite is stable relative to meionite, Ca4Al6Si6O24CO3. A chloride-free scapolite, mizzonite, has been synthesized at the approximate composition NaCa3Al5Si7O24CO3 (Ab. 2An. CaCO3). In the absence of chloride, a three-phase invariant assemblage, sodic plagioclase (~Ab60An40) + scapolite + calcite is stable relative to plagioclase + calcite over the approximate range of plagioclase composition Ab60An40-Ab35An65 and another three-phase invariant assemblage, calcic plagioclase (~Ab15An85) + scapolite + calcite is stable over the approximate range Ab30An70-An15An85.Unit-cell dimensions and refractive indices have been determined for the scapotite synthesized in these experiments and are compared with values for chemically analyzed natural scapolites.Scapolite must be regarded as a ternary solid solution in which, at a given equivalent An-content, the Cl/CO3 ratio in the large anion site can vary as a function of NaCl and CaCO3 activities.  相似文献   

15.
The present study deals with geochemical characteristics and petrogenesis of three younger granite varieties (coarse-grained biotite-muscovite granites (CBG), garnetiferous muscovite granites (GMG) and Abu Aggag biotite granites (AAG)) in El-Hudi area, east of Aswan, southeastern desert of Egypt. Mineral chemistry and whole rock chemistry data revealed that all granites have high SiO2 (70.8-74.7 wt.%), Al2O3 (12.8-14.3 wt.%), Na2O and K2O (>3.2 wt.%) contents with high Na2O/K2O ratios (~>1). Plagioclase feldspars range in composition from albite to oligoclase (An9-27) in CBG, oligoclase (An13-18) in GMG and albite (An2-6) in AAG. Potash feldspars are mainly perthitic microcline and exhibit chemical formulae as (Or93-96 Ab7-4 An0) in CBG, (Or95-98 Ab5-2 An0) in GMG and (Or82-98 Ab18-2 An0) in AAG. Biotites from CBG and GMG are enriched in (Mg and Ti) and depleted in (Al, Fe, Mn and K) compared with those of AAG. Biotites from CBG and GMG had been derived from calc-alkaline magma, whereas those from AAG had been derived from peraluminous magma. Chlorites from CBG and GMG are Mg-Fe bearing, while that from AAG is Fe-rich chlorite (chamosite). The CBG and GMG are Mg-rich monzogranites originated from high-K calc-alkaline magma with metaluminous to mildly peraluminous nature. The AAG are Fe-rich monzogranites to syenogranites generated from high-K calc-alkaline peraluminous magma. Both CBG and GMG are late- to post-orogenic granites, while the AAG are post-orogenic granites. All three granite varieties are considered as evolved I-type granites, formed under low to moderate water pressures (~ 0.5-7 kbars) and relatively high ranges of crystallization temperatures (~700-890°C). They were generated from partial melting of crustal materials at lower (CBG >30 km depth) and intermediate (GMG & AAG ~20-30 km depth) levels. The crystal fractionation was the predominant process during differentiation of parent magmas of these granites. Geochemical characteristics manifest that AAG represent the highly fractionated member of magma cycle differs from that produced CBG and GMG. The CBG are relatively enriched in both U and Th existing only within the accessory minerals such as zircon, sphene, and allanite.  相似文献   

16.
The electrical conductivities of alkali feldspar solid solutions ranging in chemical composition from albite (NaAlSi3O8) to K-feldspar (KAlSi3O8) were measured at 1.0 GPa and temperatures of 873–1,173 K in a multi-anvil apparatus. The complex impedance was determined by the AC impedance spectroscopy technique in the frequency range of 0.1–106 Hz. Our experimental results revealed that the electrical conductivities of alkali feldspar solid solutions increase with increasing temperature, and the linear relationship between electrical conductivity and temperature fits the Arrhenius formula. The electrical conductivities of solid solutions increase with the increasing Na content at constant temperature. At 1.0 GPa, the activation enthalpy of solid solution series shows strong dependency on the composition, and there is an abrupt increase from the composition of Or40Ab60 to Or60Ab40, where it reaches a value of 0.96 eV. According to these results in this study, it is proposed that the dominant conduction mechanism in alkali feldspar solid solutions under high temperature and high pressure is ionic conduction. Furthermore, since the activation enthalpy is less than 1.0 eV for the alkali feldspar solid solutions, it is suggested to be a model where Na+ and K+ transport involves an interstitial mechanism for electrical conduction. The change of main charge carriers can be responsible for the abrupt increase in the activation energy for Or60Ab40. All electrical conductivity data were fitted by a general formula in order to show the dependence of activation enthalpy and pre-exponential factor on chemical composition. Combining our experimental results with the effective medium theory, we theoretically calculated the electrical conductivity of alkali feldspar granite, alkali feldspar quartz syenite, and alkali feldspar syenite with different mineral content and variable chemical composition of alkali feldspar at high temperatures at 1.0 GPa, and the calculated results are almost in agreement with previous experimental studies on silicate rocks.  相似文献   

17.
Dykes predominate within the Neoproterozoic rocks, especially granites, of Wadi El Redi-Wadi Lahami area in the southern Eastern Desert of Egypt. The dyke swarms form three major suites: from the oldest to the youngest, they are basaltic andesite—Suite 1 (E-W and ENE-WSW), rhyolite—Suite 2 (NE-SW), and andesite—Suite 3 (NNE-SSW, NNW-SSE, and NW-SE). Despite the wide ranges of the dyke compositions, the feldspar and amphibole are usually the essential forming minerals. The plagioclase arrays between Ab0.9An99.10 in the basaltic andesite and Ab98.80An0.70 in the rhyolite, while sanidine ranges from Or44.60Ab49.70 to Or98.40Ab1.60. Amphibole in Suite 1 and 3 (Al2O3, TiO2, Na2O, and K2O are the lowest and those of SiO2 and CaO are the highest) samples are usually magnesio-hornblende, whereas it is edenite and tschermakite in Suite 2 dykes. Despite all parent magmas have calc-alkaline affinity, some elements such as Ni show an erratic behavior against the progressing differentiation from one magma chamber and implying for an assimilation of the country rocks. The high contents of amphibole, the depletion in Ti, and the enrichment in large-ion lithophile elements (such as K, Rb, Ba, Sr, and Ba) compared to the primitive mantle composition are consistent with parent hydrous melts generated due to extension above the subduction zone. The estimated compositions of liquids in equilibrium with amphiboles and the pressures at which they crystallized (4.61–7.8 kbar for the Suite 2 and 1.5–2 kbar for the Suites 1 and 3) are greatly varied. These are indications for a difference in the source regions of the parent magmas of the studied dykes. It is supposed that the Suite 1 and 2 dykes are a conjugate set emplaced due to the NW-SE crustal extension in the Arabian-Nubian shield, whereas the Suite 3 dykes generated due to the rifting along the Red Sea.  相似文献   

18.
Abstract Microprobe analyses of feldspars in granite mylonites containing flame perthite give compositions that invariably plot as three distinct clusters on a ternary feldspar diagram: orthoclase (Or92–97), albite and oligoclase-andesine. The albite occurs as grains in the matrix, as flame-shaped lamellae in orthoclase, and in patches within plagioclase grains. We present a metamorphic model for albite flame growth in the K-feldspar in these rocks that is related to reactions in plagioclase, rather than alkali feldspar exsolution. Flame growth is attributed to replacement and results from a combination of two retrograde reactions and one exchange reaction under greenschist facies conditions. Reaction 1 is a continuous or discontinuous (across the peristerite solvus) reaction in plagioclase, in which the An component forms epidote or zoisite. Most of the albite component liberated by Reaction 1 stays to form albite in the host plagioclase, but some Na migrates to form the flames within the K-feldspar. Reaction 2 is the exchange of K for Na in K-feldspar. Reaction 3 is the retrograde formation of muscovite (as ‘sericite’) and has all of the chemical components of a hydration reaction of K-feldspar. The Si and Al made available in the plagioclase from Reaction 1 are combined with the K liberated from the K-feldspar, to produce muscovite in Reaction 3. The muscovite forms in the plagioclase, rather than the K-feldspar, as a result of the greater mobility of K relative to Al. The composition of the albite flames is controlled by both the peristerite and the alkali feldspar miscibility gaps and depends on the position of these solvi at the pressure and temperature that existed during the reaction. Using an initial plagioclase composition of An20, the total reaction can be summarized as: 20 oligoclase + 1 K-feldspar + 2 H2O = 2 zoisite + muscovite + 2 quartz + 15 albiteplagioclase+ 1 albiteflame. This model does not require that any additional feldspar framework be accreted at replacement sites: Na and K are the only components that must migrate a significant distance (e.g. from one grain to the next), allowing Al to remain within the altering plagioclase grain. The resulting saussuritization is isovolumetric. The temperature and extent of replacement depends on when, and how much, water infiltrates the rock. The fugacity of the water, and therefore the pressure of the fluid, may have been significantly lower than lithostatic during flame growth.  相似文献   

19.
Robert J. Stull 《Lithos》1978,11(3):243-249
Mantled feldspars that formed by resorption, development of skeletal plagioclase crystals, and filling with alkali feldspar are common in the Golden Horn batholith, Washington. Subhedral plagioclase mantles have weak normal zoning from An17 to An10. Plagioclase zoning and twinning are crosscut by resorption channels. Resorption cavities and channels are coated with albite (An10). Anhedral, perthitic orthoclase within the plagioclase is optically continuous with orthoclase in channels and on the mantle exterior.This texture resulted from resorption of calcic cores of plagioclase as pressure decreased when water-undersaturated granite magma intruded to a shallow crustal level. At shallow level, only alkali feldspar and quartz crystallized and were available to fill the skeletal plagioclase.  相似文献   

20.
Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses <1 μm. Semicoherent lamellae are encircled by nanotunnel loops in two orientations and cut by pull-apart cracks. The average bulk composition of this microtexture is Ab27.6Or71.8An0.6. The remaining 30 vol% is deuterically coarsened, microporous patch and vein perthite composed of incoherent subgrains of oligoclase, albite and irregular microcline. The largest subgrains are ~3 μm in diameter. Heating times in the laboratory were 12 to 6,792 h and T from 300°C into the melting interval at 1,100°C. Most samples were annealed at constant T but two were heated to simulate an 40Ar/39Ar step-heating schedule. Homogenisation of strain-controlled lamellae by Na↔K inter-diffusion was rapid, so that in all run products at >700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol−1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50–100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si–Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated 40Ar/39Ar step-heating schedule. New features called ‘slots’ developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical ‘bubbles’, which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号