首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples from the core to the margin of a 20 cm wide meta-dolerite dyke are sequentially enriched in K, Rb, Sr, and the light REE's. Rb-Sr and Sm-Nd compositional and isotopic profiles in the dyke are interpreted to be the result of selective contamination with components of country rock derivation, rather than the result of simple bulk mixing. 87Rb86Sr ratios are higher at the edge of the dyke than at its centre, although they are somewhat irregular, due probably to the effects of subsequent alteration. This profile and one shown by unsupported 87Sr are both consistent with contamination of the dyke by a fluid phase derived by the breakdown of biotite. Common Sr shows a parallel, albeit weaker, contamination profile which is interpreted to reflect the contribution of a Sr-bearing phase such as plagioclase. 147Sm144Nd ratios and 144Nd concentrations increase and decrease respectively from the margin to the core of the dyke. In addition, the margin of the dyke is significantly less radiogenic than the interior. This contrasts with the relatively radiogenic character of an adjacent pegmatite vein. As this sample does not lie on an anticipated contamination profile between the Uivak gneisses and the dyke it is concluded that the REE contamination of the dyke occurred by the addition of a REE-enriched fluid phase which gained access to the dyke by flow along the dyke-pegmatite interface. If it is assumed that both the Rb-Sr and Sm-Nd contamination profiles are the result of diffusion limited processes, then the observations of scale made in this paper suggest that the rate of diffusion of Nd is an order-of-magnitude slower than that for Sr. In view of the scale and nature of these profiles, ages obtained from isotopic data for such mafic dykes must be interpreted with some care. Nevertheless, in spite of these limitations the ?Nd values for the least contaminated specimens provide a clear indication that the Saglek dykes were derived from a depleted mantle source with ?Nd? +2.  相似文献   

2.
A reaction zone between a metamorphosed basic dyke and marble at Hirao-dai, north Kyushu, Japan, consists of well-organized sequential zones of diopside, garnet and wollastonite; textures are characteristic of diffusion-controlled structures. The reaction zone formed during contact metamorphism associated with intrusion of a Cretaceous granodiorite at ∼300 MPa and 700 °C. The metamorphosed basic dyke consists of diopside, biotite and plagioclase ( X Ab = 0.4–0.8), whereas the marble is almost pure calcite. The initial boundary between the dyke and the marble is probably located within the current diopside zone, as calcite occurs as remnants among diopside grains in areas close to the boundary with the garnet zone. This observation provides a criterion to judge the stability of the zonal sequence in our modelling. The formation of the reaction zone is attributed to a single-stage steady-state process with five overstepping reactions. CaO, MgO, FeO, SiO2 and AlO3/2 are the reaction-controlling components that are necessary to describe the growth of the reaction zone. An isochemical steady-diffusion model cannot reproduce the measured phase ratios of product minerals; this indicates open-system behaviour of the reaction zone. The choice of closure components is an essential task in the treatment of open-system modelling, together with determination of phase ratios (Ashworth & Birdi model) or estimation of boundary fluxes (Johnson & Carlson model). Of all the possible combinations of closure components, closure conditions for CaO and MgO provide the best results for both models. The stability of the zonal sequence is limited at relatively large values of L SiSi/ L CaCa. Similar results from the two models confirm their consistency under the same closure conditions.  相似文献   

3.
Rare earth element (REE) and major element data are presented on 44 Archaean samples which include spinifex textured ultramagnesian lavas (STPK) spinifex textured basalts (STB) and low MgO tholeiites. The samples come from the Yilgarn and Pilbara Blocks (W. Australia), Barberton (South Africa), Belingwe and Que Que (Rhodesia), Abitibi (Canada) and the 3.7 b.y. Isua Belt of Western Greenland. In addition REE data are given on three near primitive mid-ocean ridge basalts (MORB) and a glassy MORB-type basalt from Taiwan. We suggest that REE patterns, particularly the light REE and Eu, can be affected by metamorphism, but argue that the consistency of pattern from samples both within and between areas enables recognition of primary patterns. La/Sm ratios of 2.7 b.y. STPK are characterised by being lower than those of associated basalts. The 3.5 b.y. STPK Barberton material does not show this feature but instead displays significant heavy REE depletion. The separation of garnet from these liquids is suggested as a possible mechanism for the high CaO/Al2O3 ratios, (Al loss) and the heavy REE and Sc depletion. The REE data on Barberton material is equivocal on the derivation of the so-called basaltic komatiites from the peridotitic komatiites. However, REE analyses on STPK and high magnesian lavas from elsewhere suggests that crystal fractionation is not a viable mechanism to produce one from the other. We suggest instead, that varying amounts of partial melting of different sources is responsible for the spectrum of compositions. The STB appear to be an easily recognised rock type within the Archaean. They are characterised by quench (clinopyroxene) textures and a light REE enriched pattern. It is suggested that these are near primary melts and that their REE patterns mirror their mantle source. We propose a two stage model for the 2.7 b.y. mafic complexes, in which, prior to the generation of ultrabasic magmas, the source underwent a small amount of partial melting which resulted in the removal of a melt enriched in incompatible elements. The depletion process could be achieved either during mantle diapirism or by upward migration of interstitial melts into an Archaean low velocity zone. The spread of La/Sm ratios in STPK and STB is used as an argument that the Archaean mantle was chemically heterogeneous and that the degree of heterogeneity was similar to that observed in modern ocean volcanics. As a result, partial melting of the mantle under different P-T conditions produced a spectrum of magma types. The information presently available on Archaean mafic and silicic magmatism and the incompleteness of geochemical data on present day tectonic environments are two major obstacles in formulating Archaean tectonic models. In addition a comparison of present day and Archaean ultramafic and silicic rocks suggests that plate tectonic models as presently understood may not be suitable analogues for all Archaean tectonic environments.  相似文献   

4.
The Sr,Nd and Pb isotopic characteristics of the Wudang basic dyke swarms and basic volcanics of the Yaolinghe Group show that they were derived from the same multi-component mixing source in the mantle.The Wudang basic dyke swarms have(^87Sr/^86Sr)i=0.6905-0.7061,εNd(t)=-1.9-5.0,△^208Pb/^204Pb=35.49-190.26,△^207Pb/^204Pb=Th/Ta and a wide range of La/Yb ratios;and the basic volcanics of the Yaolinghe Group have(^87Sr/^86Sr)i=0.6487-0.7075,εNd(t)=0.11-3.94,△^208Pb/^204Pb=-81.58-219.95,△^207Pb/^204Pb=4.44-16.68and higher Th/Ta and La/Yb ratios,indicating that their source is a mixture of DM and EMⅡ,and the basic volcanics of the Yaolinghe Group were contaminated by crust materials en rout to the surface.Based on the geochemical features of continental tholeiitic basalts and being products of differen tacies derived from the same source,it can be concluded that an important rifting event in the South Qinling basement block occurred during Neoproterozoic,followed by a setting of oceanic basic in the Early Paleozoic.  相似文献   

5.
武当地块基性岩墙群与耀岭河群基性火山岩的 Sr、 Nd、 Pb 同位素特征反映它们具相同的混合地幔源区。前者的(87 Sr/86 Sr)i= 06905~07061, ε N d (t) = - 19~50, Δ208 Pb/204 Pb= 3549~19026, Δ207 Pb/204 Pb= 4~85, Th/ Ta 低, La/ Yb 变化大;后者的(87 Sr/86 Sr)i= 06487~07075,ε N d(t)= 011~394, Δ208 Pb/204 Pb= - 8158~21995, Δ207 Pb/204 Pb= 444~1668, Th/ Ta 和 La/ Yb 较高。这指示它们的源区以岩石圈亏损地幔和第2 类富集地幔为主要混合组分, 耀岭河群基性火山岩曾遭受地壳物质的混染。结合它们具大陆拉斑玄武岩地球化学特征, 代表同源异相裂谷环境的产物推断, 南秦岭基底陆块在新元古代时曾发生过一次重要裂解作用, 并向早古生代秦岭洋盆转变。  相似文献   

6.
Distribution of elements in coexisting minerals—biotite, hornblende, augite, hypersthene and plagioclase in charnockitic rocks of West Uusimaa Complex, Finland, is mostly orderly indicating a close approach to chemical equilibrium. The distribution of iron and magnesium in coexisting hornblende and pyroxenes of basic charnockites and other rocks of granulite facies from several different areas is also orderly but the variation in the fugacities of H2O and H2 may cause a disorderly distribution locally in some rocks. The probable oxidation or reduction reactions are discussed on the basis of thermochemical and mineralchemical data.  相似文献   

7.
The H2O and CO2 content of cordierite was analysed in 34 samples from successive contact metamorphic zones of the Etive thermal aureole, Scotland, using Fourier‐transform infrared spectroscopy (FTIR). The measured volatile contents were used to calculate peak metamorphic H2O and CO2 activities. Total volatile contents are compared with recently modelled cordierite volatile saturation surfaces in order to assess the extent of fluid‐present v. fluid‐absent conditions across the thermal aureole. In the middle aureole, prior to the onset of partial melting, calculated aH2O values are high, close to unity, and measured volatile contents intersect modelled H2O–CO2 saturation curves at the temperature of interest, suggesting that fluid‐present conditions prevailed. Total volatile contents and aH2O steadily decrease beyond the onset of partial melting, consistent with the notion of aH2O being buffered to lower values as melting progresses once free hydrous fluid is exhausted. All sillimanite zone samples record total volatile contents that are significantly lower than modelled H2O–CO2 saturation surfaces, implying that fluid‐absent conditions prevailed. The lowest recorded aH2O values lie entirely within part of the section where fluid‐absent melting reactions are thought to have dominated. Samples within 30 m of the igneous contact appear to be re‐saturated, possibly via a magmatically derived fluid. In fluid‐absent parts of the aureole, cordierite H2O contents yield melt–H2O contents that are compatible with independently determined melt–H2O contents. The internally consistent cordierite volatile data and melt–H2O data support the conclusion that the independent P–T estimates applied to the Etive rocks were valid and that measured cordierite volatile contents are representative of peak metamorphic values. The Etive thermal aureole provides the most compelling evidence, suggesting that the cordierite fluid monitor can be used to accurately assess the fluid conditions during metamorphism and partial melting in a thermal aureole.  相似文献   

8.
Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma, Sri ∼ 0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; (ΣHREE)N ∼ 2–3 times chondrite, (Gd/Yb)N ∼ 1). The εNd(t) values vary from +1.23 to -3.27 whereas δ18O values vary from +3.16‰ to +5.29‰ (average +3.97‰±0.75‰) which is lighter than the average mantle value. Isotopic, trace and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised by the fluid (± silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted, variable εNd, low Sri(0.702) and low δ18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the granitic crust which possibly originated due to the same thermal pulse.  相似文献   

9.
10.
11.
Silicate assemblages in the wallrocks of the metamorphosed, stratiform sulfide deposit Matchless, Damara orogen, Namibia, yield temperatures between 550 and 625 °C and pressure of 6–8 kbar. Highest density fluid inclusions, containing either pure CO2 or CO2-CH4/N2 mixtures, display isochors which extrapolate through these metamorphic peak conditions. A second group of inclusions with the same fluid compositions exhibit isochors conforming to lower pressures, i.e. 3 kbar as deduced from sphalerite barometer, at the same temperatures. From these observations, we deduce an isothermal uplift path after peak of amphibolite facies metamorphism.
Zusammenfassung Silikatparagenesen im Nebengestein der metamorphen, schichtgebundenen Kupferlagerstätte Matchless, Damara-Orogen, Namibia, ergeben Temperaturen zwischen 550 und 625 °C und Drucke von 6–8 kbar beim Höhepunkt der Me-tamorphose. Fluideinschlüsse hoher Dichte, die mit CO2 oder mit CO2+CH4/N2 gefüllt sind, besitzen Isochoren, die durch diese P-T-Kombination verlaufen. Eine zweite Gruppe von Fluideinschlüssen mit der gleichen Zusammensetzung entspricht niedrigeren Druckbedingungen von etwa 3 kbar, wie sie sich aus dem Zinkblende-Barometer ableiten lassen, jedoch bei unveränderter Temperatur. Daraus läßt sich auf eine isotherme Heraushebung nach dem Höhepunkt der Metamorphose schließen.

Résumé Le dépôt de sulfure stratiforme métamorphique de Matchless (orogenèse Damara, Namibie) sont encaissés dans des roches dont les paragenèses silicatées indiquent des températures comprises entre 550° et 625° et des pressions de 6 à 8 Kb. Des inclusions fluides, très denses, contenant soit du CO2 pur, soit des mélanges CO2 + CH4/N2 fournissent des isochores qui traversent ce champ (P, T). Les isochores d'un deuxième groupe d'inclusions de mêmes compositions donnent, pour les mêmes températures, des pressions plus basses, de l'ordre de 3 Kb, déduites du baromètre à blende. On en déduit un soulèvement isothermique de la région après le pic du métamorphisme, qui s'est produit dans les conditions du faciès des amphibolites.

, Matchless, , , , , , 550 65 6 8 . , 2, 2 + CH4/N2 , . , 3 , , . , , .
  相似文献   

12.
To evaluate the possible contribution of ocean floor sediments during the genesis of the volcanism of Vanuatu (New Hebrides) active margin, we have determined the balance of Sr isotopes and K, Rb and Sr contents for the stratigraphic column of site 286 (leg 30, DSDP). This site is located on the oceanic plate that will be subducted. Analyses have been performed on sedimentary and igneous rocks, before and after acid leaching. The Sr isotopic data do not support the occurrence of some continental component in arc magmas of this active margin which is really intraoceanic. It is demonstrated that the d'Entrecasteaux fracture zone results from the intense fracturing of typical oceanic crust. The analyses of the volcanogenic components of the sediments show a change in the source of volcanoclastic detritus from the Loyalty islands in the Eocene to the volcanic arc of Vanuatu (New Hebrides) during Pliocene and Quaternary times. The determined balance of Sr isotopes and of K, Rb, Sr contents, may be used for calculation of multicomponent melting mixing models for the origin of Vanuatu arc magmas, but we emphasize that in these models the Sr isotopes cannot be considered as an appropriated tracer of sediment contribution.  相似文献   

13.
The porphyritic quartz diorites of the Caledonian Brabant Massif have been totally altered. Ca, Rb, Sr, Zr, Ce, Y measurements and Sr-Nd isotopic analyses were performed on the Quenast plug and the Lessines sill, in an attempt to study the relative mobility of Sr and evaluate the extent, direction and magnitude of the 87Sr/86Sr alterations. Sr electron microprobe analyses of epidote were also carried out to assess its role in the Sr distribution.The initial 87Sr/86Sr ratio is shown to have had an unsteady behaviour during the studied water/rock interactions since it has been sometimes enhanced, sometimes depressed and occasionally not modified. The possibility and magnitude of the 87Sr contamination turn out to be strictly related to the degree of Sr accommodation in the secondary minerals. Epidote in particular has proved to be the main trap for the hydrothermal Sr and this mineral is thus regarded as the major controlling factor of 87Sr hydrothermal contamination. The epidote-poor rocks (albite+chlorite-rich rocks) seem to have been unaffected by any Sr interchange with the aqueous solutions. Therefore, as alteration quickly follows the crystallization of the magma, their initial 87Sr/ 86Sr ratio, which is deduced from an isochron, might be a primary petrogenetic feature enabling interpretation of the genesis of their parental magmas. On the other hand, in the epidote-rich rocks, this ratio has been readily altered; it could thus generally be used only to trace the origin of the hydrothermal solutions. As a consequence, these rocks should not be selected for dating an alteration event by the Rb-Sr method.  相似文献   

14.
A spatially abrupt geochemical boundary is preserved within four plutonic complexes along the western margin of the Cretaceous Idaho Batholith near McCall, Idaho. These intrusives ranging in composition from tonalite to granite were emplaced across a regional boundary between accreted oceanic-arc terranes and the continental margin, and their isotopic, major-element, and trace-element geochemistry provide detailed information about this change in crustal characteristics at depth, indicating that the boundary is nearly vertical and extends deep into the lithosphere. The Hazard Creek complex, emplaced west of the transition in wall-rock lithology, has initial 87Sr/86Sr (Ri) less than 0.7045 and 18O greater than 7.5, indicating little or no continental crust in its source region; however, elevated 18O requires some incorporation of rocks formed or altered at the earth's surface. A large shift in Ri and 18O is observed across the 5–8 km wide Little Goose Creek complex, which was emplaced across the wall-rock boundary. This is interpreted as mixing between: (1) a basaltic or andesitic magma with low K2O and high Na2O, Al2O3, and Sr, similar to that forming the Hazard Creek complex; and (2) materials similar to Precambrian sedimentary sedimentary rocks with low Sr, high 18O (+15) and high Ri (0.83 at 100 Ma). The Payette River complex, emplaced east of the wall-rock boundary, exhibits at least one additional component with low 18O (+6), moderate Ri (0.708) and mafic composition. This component is inferred to be old basaltic material in the lower crust or upper mantle similar to that inferred to be a minor part of the Peninsular Ranges Batholith in SE California (Silver et al. 1979; Hill et al. 1986). The easternmost complex in the Idaho transect is made up of granites that may contain a component of granitic cratonal basement. The entire west-to-east geochemical transition from oceanic-arc magmas to cratonal magmas takes place over a lateral distance of less than 20 km. Although the zone of transitional protolith dominated by metasedimentary rocks is unusually narrow and may have been in part tectonically removed, the striking geochemical similarities between this traverse and several other transects across much broader areas of Nevada and California suggest that the craton itself was not rifted apart, but that juxtaposition of the accreted oceanic-arc terranes occurred along the preexisting craton margin. The data confirm that the isotopic geochemistry of granitoid plutons can be used as a probe of deep lithospheric character, and that major lateral variations in the lithosphere on the order of one to two kilometers in width can be recognized in favorable circumstances.  相似文献   

15.
《Applied Geochemistry》1988,3(6):591-600
The Sr isotope composition of formation waters is a sensitive indicator of diagenetic processes in the host sediments, mixing processes between different bodies of water, and the connectivity of hydrological systems. The87Sr/86Sr ratio of present seawater is constant worldwife, while formation waters in hydrocarbon reservoirs have various values, depending on the aforementioned effects, in most cases different from modern seawater. This forms the basis of anatural tracer technique for seawater injection projects, involving characterization of the87Sr/86Sr ratios and Sr contents of formation waters in the reservoir before injection commences, followed by monitoring of these parameters in the produced water as injection proceeds. This method is best suited to reservoirs in which the formation waters have low Sr concentrations and87Sr/86Sr ratios much higher or lower than seawater. Available data for reservoir formation waters suggest that breakthrough recognition could be expected at <10% seawater in many sandstone reservoirs, while the method would be less sensitive in carbonate reservoir or situations where the formation waters had interacted with evaporites, as the associated waters tend to have high Sr contents. In heterogeneous but well-mapped reservoirs, it may be possible to obtain information about flow paths/mechanismsbefore breakthrough. Combination with other chemical and isotopic tracers creates a very powerful tool, the Sr method acting as a safeguard should the batch of water containing the conventional tracers be overtaken by subsequently injected seawater. The Sr method could also be used for injection projects that were begun without the addition of tracers. A natural analogue of a water injection process is found in the Jurassic Lincolnshire Limestone aquifer in England, where rapidly moving fresh meteoric water mixes progressively with an older saline formation water. The87Sr/86Sr data enable quantitative modelling of this mixing process. The infiltrating fresh water becomes progressively modified by dissolution of detrital carbonate and calcite cement in the limestone, with depth becoming increasingly dominated by Sr derived from the more soluble detrital components. The saline formation water contains water molecules of meteoric origin and an87Sr/86Sr ratio much higher than Jurassic seawater or marine carbonate; the solute content has been influence by interaction of the water with non-carbonate phases.  相似文献   

16.
Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Electronic Publication  相似文献   

17.
18.
19.
The Mistastin Lake meteorite crater lies completely within a batholith composed of mangerite and adamellite with lenses of anorthosite and is located in central Labrador. The multivariate statistical technique of correspondence analysis was used to summarize the relationships between the different rock units for the trace elements Nb, Zr, Y, Sr, Rb, Th, Pb, Zn, Cu, Ni. The samples of impact melt form a linear array of points on a factor plot joining the anorthosite samples to the mangerite and adamellite samples. This indicates that the various melt samples can be formed as a result of the complete fusion of different proportions of anorthosite and granitic rocks. A least-squares mixing model utilizing the average trace element composition of the four rock types indicates that an average melt rock can be formed by mixing 60% anorthosite, 38% mangerite and 2% adamellite. An isochron obtained on the combined mangerite and adamellite units of the batholith gives an age of 1347 ±15 m.y. (1σ) with an initial ratio of 0.7082 ± 0.0003. The anorthosite samples plot below the isochron and the melt rocks fall along a mixing line joining the locus of anorthosite points to an average granite sample on the isochron. This is a further indication that the melt was formed by melting of anorthosite and granitic rocks that form the local geological environment.  相似文献   

20.
The Sr isotope stratigraphy of the biogenic apatite was used to determine the age of pelagic sediments in the Brazil Basin (Station 1541) that contain ferromanganese micronodules, nodules, and coatings on the weathered volcanic rocks. The age of sediments at horizons 0–5 and 86–90 cm was estimated at 24.1 ± 0.2 Ma and 24.8 ± 0.2 Ma, respectively. The average sedimentation rate in the Late Oligocene was about 13 mm/ka. The hydrogenous Fe–Mn nodule on the sediment surface with the Mn/Fe value of 1.05–1.95 was formed at a rate of 1.2–2.4 mm/Ma, which is 1000 times lower than the growth rate of buried nodule (Mn/Fe 0.4) at depth of 83 cm. Diagenesis provoked changes in the mineral composition of the buried nodule (asbolane-buserite partially replaced by goethite), leading to the loss of a part of Mn, Ni, Li, and Tl but accumulation of trace elements linked with iron oxyhydroxides (Ce, Th, Be, As, and V) were retained. The composition of manganese micronodules at two studied depths in sediments evolved in the course of two stages of ore formation: related to the oxic and suboxic diagenesis. The Sr isotopic composition in manganese micronodules from both horizons do not differ from that of dissolved Sr in the ocean water. The 143Nd/144Nd ratio, which reflects the Nd isotopic composition in the paleocean during the micronodule formation, varies in manganese micronodules from different horizons and is constant in different size fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号