首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent experimental and theoretical findings raise interesting questions about the applicability of the normal gravity-wave dispersion relation at wave frequencies that exceed the spectral peak frequency. The use of the dispersion relation in analysis of HF radar Doppler sea echo is examined in this paper. Drawing on the results of perturbation theory for wave-wave nonlinear interactions, we show that this relation, so essential to echo interpretation in terms of current and wave information, can be employed with no degradation in accuracy for current measurement when the dominant wave frequency is considerably less (by as much as 10) than the radar Bragg resonance frequency. This finding is supported by comparisons of currents measured by HF radar with "surface truth;" the first-order echo must only be identifiable in order to be used accurately. Wave-height directional spectral information can be extracted from the second-order echo at a given radar frequency up to the point (in wave height) where the perturbation solution employed in the inversion process fails; then a lower radar frequency must be used. On the other hand, most conventional wave measuring instruments should not use the dispersion relation for interpretation of data well beyond the spectral peak, because they do not observe wave height as a function of both space and time independently, as does HF radar.  相似文献   

2.
HF radar systems are designed to measure spatially variable sea surface currents. A methodology was developed to complement these data with information about the current variability over the water column in a stratified shallow sea. Current profiles were estimated using a diagnostic model driven by surface current measurements from an HF radar system and by sea surface slopes derived from tide gauge data. The structure of the model has a physical basis but its parameters were derived from an analysis of in-situ current profile measurements. Application of the model to HF radar data from the SCAWVEX Rhine outflow experiment showed fair agreement with in-situ current data. As applications, estimation and tidal analysis of current fields are demonstrated.  相似文献   

3.
All ocean wave components contribute to the second-order scattering of a high-frequency (HF) radio wave by the sea surface. It is therefore theoretically possible to estimate the ocean wave spectrum from the radar backscatter. To extract the wave information, it is necessary to solve the nonlinear integral equation that describes the relationship between the backscatter spectrum and the ocean wave directional spectrum. Different inversion techniques have been developed for this problem by different researchers, but there is at present no accepted “best” method. This paper gives an assessment of the current status of two methods for deriving sea-state information from HF radar observations of the sea surface. The methods are applied to simulated data and to an experimental data set with sea-truth being provided by a directional wave buoy  相似文献   

4.
Directional wave information from the SeaSonde   总被引:1,自引:0,他引:1  
This paper describes methods used for the derivation of wave information from SeaSonde data, and gives examples of their application to measured data. The SeaSonde is a compact high-frequency (HF) radar system operated from the coast or offshore platform to produce current velocity maps and local estimates of the directional wave spectrum. Two methods are described to obtain wave information from the second-order radar spectrum: integral inversion and fitting with a model of the ocean wave spectrum. We describe results from both standard- and long-range systems and include comparisons with simultaneous measurements from an S4 current meter. Due to general properties of the radar spectrum common to all HF radar systems, existing interpretation methods fail when the waveheight exceeds a limiting value defined by the radar frequency. As a result, standard- and long-range SeaSondes provide wave information for different wave height conditions because of their differing radar frequencies. Standard-range SeaSondes are useful for low and moderate waveheights, whereas long-range systems with lower transmit frequencies provide information when the waves are high. We propose a low-cost low-power system, to be used exclusively for local wave measurements, which would be capable of switching transmit frequency when the waveheight exceeds the critical limit, thereby allowing observation of waves throughout the waveheight range.  相似文献   

5.
The work describes an inversion algorithm for HF radar measurement of nondirectional wave spectra using an omnidirectional receive/transmit antenna. Such a radar would be suitable for deployment on a stationary ship or drill rig. In this approach, wave information is extracted from the radar observations by numerically inverting the integral equation representing the backscatter return from the ocean. Test results of this technique applied to data collected using a 25.4-MHz radar installed on a ship have been very positive. For the two measurements collected, there is a high degree of correlation between the radar wave estimates and those of a WAVE-TRACK buoy  相似文献   

6.
运用高频地波雷达测量表层海流矢量,一般均采用双站测量方案,因而,需要大量的人力和昂贵的设备投入。该项研究在分析双站测量原理的基础上,结合海洋学原理和合理的假设,推导并给出了利用单站地波雷达测量表层海流的原理和公式,从而使单站测量表层海流成为可能。可预期该方案虽然在一定程度上,适当降低了空间分辨率,但却可以大幅度降低观测成本,减少人力物力的投入,并显著提高现场观测效率。  相似文献   

7.
通过简要回顾半个世纪以来海洋雷达技术发展历程的特点和规律,结合海洋雷达技术发展现状,介绍海洋雷达涉及的关键技术并进行应用场景分析。总结我国海洋雷达技术近30 a来的发展及其与国际水平的主要差距,提出"十三五"期间我国海洋雷达技术优先发展项目的建议,即超视距雷达广域海洋监测技术、浮动/机动平台高分辨率海洋雷达技术、新体制微波海洋雷达技术以及海洋雷达数据管理与应用技术等。  相似文献   

8.
Measurement of ocean wave spectra using narrow-beam HE radar   总被引:1,自引:0,他引:1  
A data interpretation algorithm is developed to extract ocean wave information from HF radar backscatter observed by a narrow-beam antenna system. The basis of this measurement is the inversion of the integral equation representing the second-order radar cross section of the ocean surface. This equation is numerically inverted by approximating it as a matrix equation and pseudoinverting the kernel matrix using a singular value decomposition. As a test of this algorithm, comparisons are made between wave spectrum estimates obtained from a WAVEC buoy and a pair of 25.4-MHz ground wave radars, using data collected during the 1986 Canadian Atlantic Storms Program (CASP). Overall, the results of this experiment have been positive and have demonstrated both the basic feasibility of the inversion algorithm and the wave sensing capability of HF radar. For example, significant wave height estimates deduced by two radars differed from the buoy, in an absolute value sense, by only 0.12 m on average. When using only one radar, the mean difference of this important parameter from the buoy was a reasonable 0.33 m  相似文献   

9.
高频地波雷达的发展与应用现状分析   总被引:1,自引:0,他引:1       下载免费PDF全文
高频地波雷达作为一种新兴的海洋探测设备,相比传统观测方式,具有大范围、全天候、低成本等优点,因而在世界各地得到了广泛使用,并在近海海洋环境监测中发挥了重要的作用。首先介绍了高频地波雷达探测海洋环境的基本原理,然后概述了阵列式和紧凑便携式两类高频地波雷达的国内外研究现状,接着介绍了高频地波雷达在海洋环境探测中的应用,最后分析了我国与世界发达国家在高频地波雷达海洋环境探测领域的差距并提出了改进建议。  相似文献   

10.
In this study the assimilation of HF radar data into a high resolution, coastal Wavewatch III model is investigated. An optimal interpolation scheme is used to assimilate the data and the design of a background error covariance matrix which reflects the local conditions and difficulties associated with a coastal domain is discussed. Two assimilation schemes are trialled; a scheme which assimilates mean parameters from the HF radar data and a scheme which assimilates partitioned spectral HF radar data. This study demonstrates the feasibility of assimilating partitioned wave data into a coastal domain. The results show that the assimilation schemes provide satisfactory improvements to significant wave heights but more mixed results for mean periods. The best improvements are seen during a stormy period with turning winds. During this period the model is deficient at capturing the change in wave directions and the peak in the waveheights, while the high sea state ensures good quality HF radar data for assimilation. The study also suggests that there are both physical and practical advantages to assimilating partitioned wave data compared to assimilating mean parameters for the whole spectrum.  相似文献   

11.
HF radar has become an increasingly important tool for mapping surface currents in the coastal ocean. However, the limited range, due to much higher propagation loss and smaller wave heights (relative to the saltwater ocean), has discouraged HF radar use over fresh water, Nevertheless, the potential usefulness of HF radar in measuring circulation patterns in freshwater lakes has stimulated pilot experiments to explore HF radar capabilities over fresh water. The Episodic Events Great Lakes Experiment (EEGLE), which studied the impact of intermittent strong wind events on the resuspension of pollutants from lake-bottom sediments, provided an excellent venue for a pilot experiment. A Multifrequency Coastal HF Radar (MCR) was deployed for 10 days at two sites on the shore of Lake Michigan near St. Joseph, MI. Similarly, a single-frequency CODAR SeaSonde instrument was deployed on the California shore of Lake Tahoe. These two experiments showed that when sufficiently strong surface winds (2 about 7 m/s) exist for an hour or more, a single HE radar can be effective in measuring the radial component of surface currents out to ranges of 10-15 km. We also show the effectiveness of using HF radar in concert with acoustic Doppler current profilers (ADCPs) for measuring a radial component of the current profile to depths as shallow as 50 cm and thus potentially extending the vertical coverage of an ADCP array  相似文献   

12.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   

13.
Ocean surface currents can be estimated, over a large coastal area, by utilizing the backscatter of high frequency (HF) radar waves from ocean gravity waves. Although the overall backscatter mechanism is complicated, the surface current information is contained within the spectral characteristics of two dominant Bragg components. The accuracy of the current estimate, following the usual FFT-based spectral estimate, is limited by the frequency resolution of the FFT and the time-varying characteristics of the Bragg components. This paper describes a high resolution parametric estimation of the ocean currents based on a recently proposed technique for analyzing time-varying signals. This technique, together with a time-domain ocean clutter model, allows all the Bragg signal information to be extracted from the two dominant eigenvalues and eigenvectors of a matrix constructed from the radar data. Using signals from an operational coastal surveillance radar, current estimates made using this technique are compared with those estimated by the conventional FFT-based method  相似文献   

14.
Several important statistical properties of the HF sea echo and its Doppler power spectrum, which are useful in optimizing the design of radar oceanographic experiments, are established. First- and second-order theories show that the echo signal (e.g., the voltage) should be Gaussian; this is confirmed with experimental surface-wave data i) by comparison of the normalized standard deviation of the power spectrum at a given frequency with its predicted value of unity, and ii) by cumulative distribution plots of measured spectral amplitudes on Rayleigh probability charts. The normalized standard deviation of the dominant absolute peak amplitudes of the power spectrum (which wander slightly in frequency) are shown from experimental data to besim 0.7for the first-order peaks andsim 0.5for the second-order peaks. The autocorrelation coefficient of the power spectra is derived from measured data and interpreted in terms of the spectral peak widths; from this information, the correlation time (or time between independent power spectrum samples) iS shown to besim 25-50s for radar frequencies above 7 MHz. All of these statistical quantities are observed to be independent of sea state, scattering cell size, and relatively independent of radar operating frequency. These quantities are then used to establish the statistical error (and confidence interval) for radar remote sensing of sea state, and it is shown, for example, that 14 power spectral samples result in a sample average whose rms error about the true mean is 1.0 dB.  相似文献   

15.
High-frequency (HF) radar systems are remote sensing tools that can be used to measure oceanographic parameters. Problems can occur when using the conventional periodogram (PG) method for computing power spectral estimates from backscattered radar signals. Temporal and spatial inhomogeneities within the radar measurement region can cause distortion in the spectra. This paper describes an instantaneous-frequency (IF) filtering technique that has been developed to measure the first-order modulation contained within the radar signal. Successful removal of this modulation is shown to yield an increased quality and quantity of ocean measurements  相似文献   

16.
We present an initial assessment of SARAL/AltiKa data in the coastal band. The study focuses on the Ibiza Channel where the north-south water exchanges play a key role in controlling the circulation variability in the western Mediterranean. In this area, the track 16 of SARAL/AltiKa intercepts the domain covered by a coastal high-frequency (HF) radar system, which provides surface currents with a range up to 60 km. We evaluate the performance of the SARAL/AltiKa Ssalto/Duacs delayed-time along-track products compared to the HF radar surface velocity fields. SARAL/AltiKa data are retrieved at a distance of only 7 km from the coast, putting in evidence the emerging capabilities of the new altimeter. The derived velocities resolved the general features of the seasonal mesoscale variability with reasonable agreement with HF radar fields (significant correlations of 0.54). However, some discrepancies appear, which might be caused by instrumental hardware radar errors, ageostrophic velocities as well as inaccurate corrections and editing in the altimeter data. Root mean square (rms) differences between the estimated SARAL/AltiKa and the HF radar velocities are about 13 cm/s. These results are consistent with recent studies in other parts of the ocean applying similar approaches to Topex/Poseidon and Jason-1 missions and using coastal altimeter corrections.  相似文献   

17.
We present and demonstrate a new method for accurately determining the radial component of sea current, using information derived from HF radar returns. The method uses autoregressive modeling and constrains the estimated frequency separation of the first-order Bragg lines to be its required theoretical value of 2√(gf/πc), where f is the radar frequency  相似文献   

18.
Second-order features in HF radar Doppler spectral data are compared with a theoretical model of the radar spectrum. The model is the corner reflector double-scatter model which employs a more realistic directional sea spectrum model than those used in earlier works. It includes a frequency-dependent angular spreading function and assumes the existence of spectral energy over a full360degarising from an apparent second-order wave-wave interaction. Comparison is made with ground wave data collected at the NRL/NOAA/ITS San Clemente Island HF radar.  相似文献   

19.
作为LORCE计划中构建高频地波雷达观测网的试点,面向象山港牛鼻山水道,在六横岛郭巨山和白马礁各设置了1台OSM AR-S50高频地波雷达.在2台雷达合成表面流场有效区域的中间地带,利用Valeport旋桨式海流仪和ADCP定点开展了周日连续观测,以验证高频地波雷达合成表面流场的精度.对比定点流场和高频地波雷达对应数据...  相似文献   

20.
High-frequency (HF) radars have been developed to map surface currents offshore by means of land-based stations. Presently available radar systems use frequencies between 25 and 30 MHz and allow a spatial resolution of 1 km and ranges of up to 50 km. This paper reports on the experience with a shipborne radar and discusses problems which arise for the azimuthal resolution on a metal ship, the correction for the ship's speed, and limitations due to pitch-and-roll motions. Current measurements during cruises to the North Atlantic are presented. It has been found that, with the support of the satellite-supported Global Positioning System, the shipborne HF radar can measure surface current velocities with an accuracy of some 5 cm·s-1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号