首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a model-atmosphere analysis for the bright ( V ∼13) star ZNG-1, in the globular cluster M10. From high-resolution ( R ∼40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T eff=26 500±1000 K and log  g =3.6±0.2 dex . A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas–dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.  相似文献   

2.
邱红梅  赵刚  仲佳勇 《天文学报》2002,43(3):257-263
在第1篇论文的基础上,确定了样本星的恒星大气参数,得到这些星中9种元素的丰度。讨论了各种元素丰度随[Fe/H]的变化。平均的[Na/Fe]~-0.01dex,接近于太阳丰度。α元素Si和Ca具有几乎相同的丰度模式,而[Ti/Fe]弥散较大,但三者均有随[Fe/H]的减小而增加的趋势。铁峰元素V、Cr、Ni在不同丰度处有较大的弥散,[Cr/Fe]在所有样本星中均表现超丰;而[Mn/Fe]却明显过贫,且随金属丰度的增加而增加。  相似文献   

3.
Very-high-resolution ( R ∼160 000) spectroscopic observations are presented for the early B-type star, HD 83206. Because it has very sharp metal lines, this star affords an opportunity to test theories of model atmospheres and line formation. Non-LTE model atmosphere calculations have been used to estimate the atmospheric parameters and absolute metal abundances (C, N, O, Mg and Si); an LTE analysis was also undertaken to investigate the validity of this simpler approach and to estimate an iron abundance. For the non-LTE calculations, there is excellent agreement with observations of the Balmer lines H α and H δ and the lines of Si  ii and Si  iii for atmospheric parameters of T eff≃21 700±600 K and log  g ≃4.00±0.15 dex. The agreement is less convincing for the LTE calculations, and a higher gravity is deduced. Careful comparison of the metal line profiles with non-LTE calculations implies that the projected rotational and microturbulent velocities have maximum values of ≃5 and ≃2 km s−1, respectively. The latter value is smaller than has often been adopted in LTE model atmosphere analyses of main-sequence stars. Non-LTE absolute metal abundances are estimated, and a comparison with those for normal B-type stars (deduced using similar non-LTE techniques) shows no significant differences. A comparison of the abundances deduced using non-LTE and LTE calculations implies systematic differences of 0.1–0.2 dex, showing the importance of using a non-LTE approach when accurate absolute abundances are required. Its location in the Hertzsprung–Russell diagram and normal metal abundance lead us to conclude that HD 83206 is probably a main-sequence B-type star. As such, it is among the sharpest-lined young B-type star discovered to date.  相似文献   

4.
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula  (12 + log O/H = 8.61 ± 0.13 dex)  is similar to that in the background nebula (8.56 ± 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumstellar nebula is very rich in nitrogen, with an abundance of 8.91 ± 0.15, compared to the background value of 7.47 ± 0.18. A new analysis of the stellar spectrum with the fastwind model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around  50 M  , which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.  相似文献   

5.
Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of ∼0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for ≤ 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon–nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung–Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.  相似文献   

6.
Abundances of O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Fe, Ni and Ba are determined for 30 nearby lower-main-sequence stars in the Northern sky using high-resolution, high signal-to-noise ratio spectra. Our results show an equilibrium of  [Fe/H]I  and  [Fe/H]II  and a much smaller star-to-star scatter of the abundance ratios as a function of metallicity compared with the results of Kotoneva et al. The non-local thermodynamic equilibrium (non-LTE) corrections for oxygen are considered and found to be small  (∼−0.04 dex)  . A flat trend of [O/Fe] exists over the whole metallicity range. The non-LTE effects for some important elements are discussed, and it is found that the abundance pattern for our programme stars is very similar to that of F and G dwarfs.  相似文献   

7.
We make new non-local thermodynamic equilibrium calculations to deduce the abundances of neon from visible-region echelle spectra of selected Ne  i lines in seven normal stars and 20 HgMn stars. We find that the best strong blend-free Ne line that can be used at the lower end of the effective temperature T eff range is λ 6402, although several other potentially useful Ne  i lines are found in the red region of the spectra of these stars. The mean neon abundance in the normal stars (log  A =8.10) is in excellent agreement with the standard abundance of neon (8.08). However, in HgMn stars neon is almost universally underabundant, ranging from marginal deficits of 0.1–0.3 dex to underabundances of an order of magnitude or more. In many cases, the lines are so weak that only upper limits can be established. The most extreme example found is υ Her with an underabundance of at least 1.5 dex. These underabundances are qualitatively expected from radiative acceleration calculations, which show that Ne has a very small radiative acceleration in the photosphere, and that it is expected to undergo gravitational settling if the mixing processes are sufficiently weak and there is no strong stellar wind. According to theoretical predictions , the low Ne abundances place an important constraint on the intensity of such stellar winds, which must be less than 10−14 M yr−1 if they are non-turbulent.  相似文献   

8.
A variety of physical processes leading to different types of pulsations and chemical compositions are observed between A- and F-type stars. To investigate the underlying mechanisms responsible for these processes in stars with similar locations in the Hertzsprung–Russell diagram, an accurate abundance determination is needed, among others. Here, we describe a semi-automatic procedure developed to determine chemical abundances of various elements ranging from helium to mercury for this type of stars. We test our procedure on synthetic spectra, demonstrating that our procedure provides abundances consistent with the input values, even when the stellar parameters are offset by reasonable observational errors. For a fast-rotating star such as Vega, our analysis is consistent with those carried out with other plane-parallel model atmospheres. Simulations show that the offsets from the input abundances increase for stars with low inclination angle of about  4°  . For this inclination angle, we also show that the distribution of the iron abundance found in different regions is bimodal. Furthermore, the effect of rapid rotation can be seen in the peculiar behaviour of the Hβ line.  相似文献   

9.
An abundance analysis based on a high-resolution spectrum is presented for a newly discovered post-asymptotic giant branch (PAGB) star in the globular cluster M79. The surprising result is that the iron abundance of the star is apparently about 0.6 dex less than that of the cluster's red giants as reported by published studies including a recent high-resolution spectroscopic analysis by Carretta and colleagues. Abundances relative to iron appear to be the same for the PAGB star and the red giants for the 15 common elements. It is suggested that the explanation for the lower abundances of the PAGB star may be that its atmospheric structure differs from that of a classical atmosphere; the temperature gradient may be flatter than predicted by a classical atmosphere.  相似文献   

10.
Several arguments that justify establishing a revised abundance calibration for DDO photometry of population I red giants are presented. The components of the blanketing vector in the DDOC(45–48) vsC(42–45) diagram are determined for late-type dwarfs and giants. We have redefined the DDO cyanogen anomaly and calibrated it against metallicity. The sample of field giants now available with abundances derived from high dispersion spectroscopy is substantially larger than previously available, leading to a more accurate abundance calibration. Iso-abundance lines in theC(41–42) vsC(42–45) diagram have been determined for population IG and K giants and an iterative method for deriving abundances of these stars is described. We show that the new DDO abundances are in very good agreement with those derived from high dispersion spectroscopy. The new method improves by about 0.1 dex the DDO abundances derived for early G and/or late K giants, with respect to the δCN method of Janes (1975).  相似文献   

11.
Elemental abundances in late-type stars are of interest in several ways: they determine the location of the stars in the HR diagram and therefore their ages, as well as the atmospheric structure in their middle and upper photospheres. Especially in the case of chromospherically active late-type stars the question arises to what degree the upper photosphere is influenced by the nearby chromosphere. Analysing S/N ∼ 200 and Δλ/λ ∼ 20 000 data, we found a mean metallicity index [M/H] = −0.2 for programme K and M field stars based on an analysis of spectra in the region 5500–9000 Å. We also found that the Ca  I 6162-Å transition is a potential surface gravity indicator for K-type stars. For the chromospheric activity interval 4.4 < log  F Mg II  < 6.6 we did not find any chromospheric activity impact on photospheric and upper photospheric transitions. With the derived metallicity, we confirmed the Li abundance from our previous paper and thus its dependence on the Mg  II chromospheric activity index. The nature of the spectrum for the active M-type star Gl 896A is explained by pure rotation of 14 km s−1. As far as the lithium–rotation relation is concerned, the spectrum of Gl 517 is rotationally broadened as well, by 12 km s−1, and the Li abundance is the second highest in our sample of stars. However, there is no link between very high Li abundance, 2.2 dex, in the K dwarf star Gl 5 and stellar rotation.  相似文献   

12.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The eclipsing and double-lined spectroscopic binary system V453 Cygni consists of two early B-type stars, one of which is nearing the terminal age main sequence and one which is roughly halfway through its main-sequence lifetime. Accurate measurements of the masses and radii of the two stars are available, which makes a detailed abundance analysis both more interesting and more precise than for isolated stars. We have reconstructed the spectra of the individual components of V453 Cyg from the observed composite spectra using the technique of spectral disentangling. From these disentangled spectra, we have obtained improved effective temperature measurements of  27 900 ± 400  and  26 200 ± 500 K  , for the primary and secondary stars, respectively, by fitting non local thermodynamic equilibrium theoretical line profiles to the hydrogen Balmer lines. Armed with these high-precision effective temperatures and the accurately known surface gravities of the stars we have obtained the abundances of helium and metallic elements. A detailed abundance analysis of the primary star shows a normal (solar) helium abundance if the microturbulence velocity derived from metallic lines is used. The elemental abundances show no indication that CNO-processed material is present in the photosphere of this high-mass terminal age main-sequence star. The elemental abundances of the secondary star were derived by a differential study against a template spectrum of a star with similar characteristics. Both the primary and secondary components display elemental abundances which are in the ranges observed in the Galactic OB stars.  相似文献   

14.
High-dispersion and low-resolution data are combined to search for super-metal-rich (SMR) FGK stars in the solar neighbourhood and Baade's Window. The data are assessed by using statistical analysis, with their rms errors playing a key role. A star is considered to be SMR if its value of     , while 'borderline' SMR status may be assigned if     . Borderline SMR status is assigned to μ Leo and three other giants, but no full-fledged SMR giants are found in either Baade's Window or the solar neighbourhood. By contrast, the existence of SMR class     stars turns out to be well established, with values found for [Fe/H] that are as large as ∼+0.4 dex. It is concluded that this apparent contrast between class     stars and giants should not be interpreted in astrophysical terms at present because of marked shortcomings in the available data base for giants. Recommendations are made about future research that may cure this problem and extend present knowledge about SMR dwarfs.  相似文献   

15.
We employ spectra of resolution 20–35000 of seven SC stars, four S stars, two Ba stars and two K–M stars to derive abundances of a variety of elements from Sr to Eu relative to iron. Special attention is paid to Rb and Tc, and to the ratio of the heavy s-process species to the light s-process elements. Abundances are derived in LTE, both by using model atmospheres in which the carbon and oxygen abundances are nearly equal and by using curves of growth. Spectrum synthesis is used for critical lines such as the 5924-Å line of Tc and the 7800-Å line of Rb. For most of the heavy-element stars the enhancement of the s-process elements is about a factor of 10. The ratio of the heavy to light s-process species is not far from solar, except for RR Her for which the same ratio is +0.45 dex. For Tc the blending by other lines is severe. While we have probably detected the 5924-Å line, we can only present abundances in the less-than-or-equal-to category. For Rb, whose abundance is sensitive to the 85Rb/87Rb ratio and hence to the neutron density during s-process production, we find a considerable range of abundances, indicating a neutron density from 106 to ≳108 cm−3 for the SC stars. For the four S stars the range is from 107 to ≳108 cm−3. Recent calculations by Gallino et al. show that neutron densities near 107 cm−3 favour the 13C source for neutrons, while densities greater than 108 cm−3 may be associated with neutrons from the 22Ne source.  相似文献   

16.
We search for the maximum oxygen abundance in spiral galaxies. Because this maximum value is expected to occur in the centres of the most luminous galaxies, we have constructed the luminosity – central metallicity diagram for spiral galaxies, based on a large compilation of existing data on oxygen abundances of H  ii regions in spiral galaxies. We found that this diagram shows a plateau at high luminosities  (−22.3 ≲ M B ≲−20.3)  , with a constant maximum value of the gas-phase oxygen abundance  12 + log (O/H) ∼ 8.87  . This provides strong evidence that the oxygen abundance in the centres of the most luminous metal-rich galaxies reaches the maximum attainable value of oxygen abundance. Since some fraction of the oxygen (about 0.08 dex) is expected to be locked into dust grains, the maximum value of the true gas + dust oxygen abundance in spiral galaxies is 12 + log(O/H) ∼ 8.95. This value is a factor of ∼2 higher than the recently estimated solar value. Based on the derived maximum oxygen abundance in galaxies, we found the oxygen yield to be about 0.0035, depending on the fraction of oxygen incorporated into dust grains.  相似文献   

17.
We present a library of 1654 high-resolution stellar spectra, with a sampling of 0.3 Å and covering the wavelength range from 3000 to 7000 Å. The library was computed with the latest improvements in stellar atmospheres, incorporating non-local thermodynamic equilibrium (non-LTE) line-blanketed models for hot, massive  ( T eff≥ 27 500 K)  and line-blanketed models for cool  (3000 ≤ T eff≤ 4500 K)  stars. The total coverage of the grid is  3000 K ≤ T eff≤ 55 000 K  and  −0.5 ≤ log g ≤ 5.5  , for four chemical abundance values: twice solar, solar, half solar and 1/10 solar. Evolutionary synthesis models using this library are presented in a companion paper. We tested the general behaviour of the library by calculating and comparing equivalent widths of numerous H and He  i lines, and some of the commonly used metallic indices. We also compared the library with the empirical libraries STELIB and Indo-US. The full set of the synthetic stellar spectra is available from our websites ( http://www.iaa.csic.es/~rosa and http://www.astro.iag.usp.br/~lucimara/library.htm ).  相似文献   

18.
We present theoretical evolutionary sequences of intermediate-mass stars  ( M = 3 − 6.5 M)  with metallicity   Z = 0.004  . Our goal is to test whether the self-enrichment scenario by massive asymptotic giant branch stars may work for the high-metallicity globular clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O–Al and O–Na anticorrelations, at intermediate metallicities, i.e.  [Fe/H]=−1.3  . We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate-metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium–oxygen anticorrelation for clusters of intermediate metallicity ( Z ≈ 10−3) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of   M ≳ 5 M  contribute to self-enrichment.  相似文献   

19.
We analyze the temperature dependence of the abundances of the chemical elements Si, Ca, Cr, and Fe in the atmospheres of normal, metallic-line (Am), magnetic peculiar (Ap), and pulsating magnetic peculiar (roAp) stars in the range 6000–15000 K. The Cr and Fe abundances in the atmospheres of Ap stars increase rapidly as the temperature rises from 6000 to 9000–10000 K. Subsequently, the Cr abundance decreases to values that exceed the solar abundance by an order of magnitude, while the Fe abundance remains enhanced by approximately +1.0 dex compared to the solar value. The temperature dependence of the abundances of these elements in the atmospheres of normal and Am stars is similar in shape, but its maximum is several orders of magnitude lower than that observed for Ap stars. In the range 6000–9500 K, the observed temperature dependences for Ap stars are satisfactorily described in terms of element diffusion under the combined action of gravitational settling and radiative acceleration. It may well be that diffusion also takes place in the atmospheres of normal stars, but its efficiency is very low due to the presence of microturbulence. We show that the magnetic field has virtually no effect on the Cr and Fe diffusion in Ap stars in the range of effective temperatures 6000–9500 K. The Ca abundance and its variation in the atmospheres of Ap stars can also be explained in terms of the diffusion model if we assume the existence of a stellar wind with a variable moderate rate of ~(2–4) × 10? 15M yr?1.  相似文献   

20.
We continue a systematic study of chemical abundances of the strontium filament found in the ejecta of η Carinae. To this end we interpret the emission spectrum of Sc  ii and Cr  ii using multilevel non-local thermodynamic equilibrium models. Since the atomic data for these ions were previously unavailable, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. The observed spectrum is consistent with an electron density of the order of 107 cm−3 and a temperature between 6000 and 7000 K, conditions previously determined from [Ni  ii ], [Ti  ii ] and [Sr  ii ] diagnostics. The observed spectrum indicates an abundance of Sc relative to Ni more than 40 times the solar value, while the Cr/Ni abundance ratio is roughly solar. Various scenarios of depletion and dust destruction are suggested to explain such abnormal abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号