首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overall morphology of the barred spiral galaxy NGC 7479 is modelled in numerical simulations of a minor merger. Special attention is paid to the morphology and velocity field of the asymmetric spiral structure and the strong stellar bar. The mass of the satellite galaxy is 1/10 of the mass of the primary disc, or 1/30 of the total mass of the primary. The satellite is placed initially in a circular prograde orbit at six disc scalelengths from the centre of the primary. We follow the evolution of the merger until the secondary galaxy reaches the nuclear region of the primary. A comparison between the modelled and observed morphologies of the stellar and the ionized and neutral gas distributions and velocity fields supports the hypothesis that the transient look of NGC 7479 is a result of a minor merger. We vary several of the initial parameters of the merger and discuss their effects on the resulting morphology. The merging satellite galaxy is likely to lie within the bar of NGC 7479. We identify a possible candidate in the observational data. We discuss briefly the most probable future evolution of NGC 7479 in the light of our minor-merger simulations, and conclude that NGC 7479 is likely to evolve toward an earlier Hubble type.  相似文献   

2.
We have investigated the effects of a bar and an asymmetric spiral structure on the neutral hydrogen distribution and kinematics in the strongly barred spiral galaxy NGC 7479. The strongest 21-cm line emission at 1-kpc resolution comes from the western spiral arm which appears to be slightly inclined to the plane of the main disc. In contrast, the area within the radius of the bar is devoid of 21-cm line emission. The radio continuum emission at 21 cm follows the bar dust lanes, but beyond 3 kpc from the nucleus the radio continuum emission has a peculiar morphology, unlike that of optical and near-infrared images. We did not detect any low surface brightness gas-rich companions in the near neighbourhood of NGC 7479. This leads us to propose that the strong western spiral arm was created in a recent minor merger.  相似文献   

3.
The pattern speed is a defining parameter of any barred galaxy. A large number of model-dependent techniques have therefore been developed to derive the pattern speed. However, the only model-independent technique for measuring this quantity – the Tremaine–Weinberg method – has hitherto been applied to just one case, the SB0 galaxy NGC 936. In this paper, we apply the technique to a second system, the SBa galaxy NGC 4596. The resulting estimate for the pattern speed is Ωp=52±13 km s−1 kpc−1. This result is corroborated by a spectrum obtained along the major axis of the bar in this system. The corotation radius associated with this pattern speed lies just beyond the end of the bar indicating a fast bar. Combining the bar major-axis spectra with data obtained from a Hubble Space Telescope WFPC2 image, we also find strong evidence for a nuclear disc.  相似文献   

4.
We present for the first time a two-dimensional velocity field of the central region of the grand-design spiral galaxy NGC 5248, at 0.9-arcsec spatial resolution. The H α velocity field is dominated by circular rotation. While no systematic streaming motions are seen in the area of the nuclear grand-design spiral or the circumnuclear ring, the amplitude of residual velocities, after subtracting a model circular velocity field, reaches 20 km s−1 in projection. The rotation curve levels out at around 140 km s−1, after a well-resolved and rather shallow rise. We have generated an analytical model for the nuclear spiral and fitted it to our observations to obtain estimates of the pattern speed of the spiral and the speed of sound in the central region of NGC 5248. Our results are consistent with a low pattern speed, suggesting that the nuclear spiral rotates with the same rate as the main spiral structure in NGC 5248, and thus that the spiral structure is coupled from scales of a few hundred parsecs to several kiloparsecs. We have also compared the observed structure and kinematics between the nuclear regions of NGC 5248 and M100. Several similarities and differences are discussed, including the location of the peak emission regions on major and minor axes, and the spiral arm streaming motions. We find no kinematic evidence for the presence of a nuclear bar in NGC 5248.  相似文献   

5.
The velocity field of the nearly face-on galaxy NGC 3631, derived from observations in the H α line and H  i radio line, is analysed to study perturbations related to the spiral structure of the galaxy. We confirm our previous conclusion that the line-of-sight velocity field gives evidence of the wave nature of the observed two-armed spiral structure. Fourier analysis of the observed velocity field is used to determine the location of corotation of the spiral structure of this galaxy, and the radius of corotation R c is found to be about 42 arcsec, or 3.2 kpc. The vector velocity field of the gas in the plane of the disc is restored, and, taking into account that we previously investigated vertical motions, we now have a full three-dimensional gaseous velocity field of the galaxy. We show clear evidence of the existence of two anticyclonic and four cyclonic vortices near corotation in a frame of reference rotating with the spiral pattern. The centres of the anticyclones lie between the observed spiral arms. The cyclones lie close to the observed spirals, but their centres are shifted from the maxima in brightness.  相似文献   

6.
When integrals in the standard Tremaine–Weinberg method are evaluated for the case of a realistic model of a doubly barred galaxy, their modifications introduced by the second rotating pattern are in accord with what can be derived from a simple extension of that method, based on separation of tracer's density. This extension yields a qualitative argument that discriminates between prograde and retrograde inner bars. However, the estimate of the value of inner bar's pattern speed requires further assumptions. When this extension of the Tremaine–Weinberg method is applied to the recent observation of the doubly barred galaxy NGC 2950, it indicates that the inner bar there is counter-rotating, possibly with the pattern speed of  −140 ± 50 km s−1 arcsec−1  . The occurrence of counter-rotating inner bars can constrain theories of galaxy formation.  相似文献   

7.
8.
9.
10.
The relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in the grand‐design galaxy NGC 628 were studied. We found that the radial distribution of the average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5–5 kpc. There are no correlations between the radial distributions of the average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of the average star formation rate in star formation regions in spiral arms and the H I column density. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
Various processes have been proposed to explain how galaxy discs acquire their thickness. A simple diagnostic for ascertaining this 'heating' mechanism is provided by the ratio of the vertical to radial velocity dispersion components. In a previous paper we have developed a technique for measuring this ratio, and demonstrated its viability on the Sb system NGC 488. Here we present follow-up observations of the morphologically similar Sab galaxy NGC 2985, still only the second galaxy for which this ratio has been determined outside the solar neighbourhood. The result is consistent with simple disc-heating models that predict ratios of σ z σ R less than one.  相似文献   

13.
14.
15.
The XMM-Newton observations of H2O megamaser galaxy NGC 7479 are presented.Its smoothed X-ray image clearly shows spiral morphology,which matches well with its optical asymmetric spiral structure.One prominent source can be found at the tip of its northern spiral arm,which is much brighter than its nuclear X-ray source(about a 50% higher count rate).For the nuclear source(a circular region with a radius of 20"),the spectra show soft excess below 2 keV and a strong iron Kα emission line.The best fitting model includes a partially absorbed model for the hard continuum and one thermal plasma model for the soft scatter component.Both the high column density(NH~6.88 × 1023 cm-2)and strong fluorescent iron line(with an equivalent width of~1.5 keV)support the existence of one heavily obscured AGN.For the bright prominent source,its radial profile is consistent with that of a single point-like source.Its spectra are extracted from the circular region around its peak,with a radius of 20"and 6"respectively and both spectra show no significant difference.Four alternative models for the ultra-luminous X-ray source(ULXs)can reproduce the spectra well: an absorbed power law,thermal bremsstrahlung,multicolor blackbody disk plus another blackbody or power law.Further observations(e.g.,the tremendous improvement in the spatial resolution of the Chandra X-ray observations)and studies are desirable for probing the nature of this prominent source.In addition,we also estimate the mass of its central engine to be 1.18× 107 M⊙ and maser disk parameters: the disk radius of~0.7 pc and the dimensionless accretion rate(L2-10keV/LEdd)of 1.2 × 10-4.  相似文献   

16.
Submillimetre mapping observations of the active edge-on spiral galaxy NGC 3079 are presented. These maps at 850 and 450 μm were made with the Submillimetre Common User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT).
The source structure at these wavelengths consists of a central unresolved source embedded in diffuse disc emission, similar to that displayed at 1.2 mm. The disc emission is fitted with two optically thin, isothermal dust models which give temperatures of 12 and 31 K, similar to those derived previously by Braine et al. The core component is well described by a single-temperature fit (∼32 K). The combined dust mass from these observations, using the same mass absorption coefficient as Devereux & Young (1990) is 3.5×108 M, of which ∼90 per cent resides in the cold component of the galactic disc. The effect of the cold dust component detected by SCUBA is thus to reduce the global gas-to-dust mass ratio from ∼1400 found in the above study to 85, very similar to the Galactic level. Calculations using the models of Draine & Lee and/or alternative molecular gas mass estimates yield gas-to-dust mass ratios in the range 60–190.
The data presented here, together with previously published 1.2-mm mapping observations and IRAS data, are inconsistent with detections made with the Infrared Space Observatory ( ISO ). In particular, the latter give an excess of flux at 200 and 180 μm relative to that predicted by our simple model fits (approximately a factor of 2–3).  相似文献   

17.
18.
We study the dynamics of a model for the late-type barred-spiral galaxy NGC 3359 by using both observational and numerical techniques. The results of our modelling are compared with photometric and kinematical data. The potential used is estimated directly from observations of the galaxy. It describes with a single potential function, a barred-spiral system with an extended spiral structure. Thus, the study of the dynamics in this potential has an interest by itself. We apply orbital theory and response models for the study of the stellar component, and smoothed particle hydrodynamics for modelling the gas. In particular, we examine the pattern speed of the system and the orbital character (chaotic or ordered) of the spiral arms. We conclude that the spiral pattern rotates slowly, in the sense that its corotation is close to or even beyond the end of the arms. Although a single, slow pattern speed could, under certain assumptions, characterize the whole disc, the comparison with the observational data indicates that probably the bar and the spirals have different angular velocities. In our two pattern speeds model, the best fit is obtained with a bar ending close to its 4:1 resonance and a more slowly rotating spiral. Assuming an 11 Mpc distance to the galaxy, a match of our models with the observed data indicates a pattern speed of about  39 km s−1 kpc−1  for the bar and about  15 km s−1 kpc−1  for the spiral. We do not find any indication for a chaotic character of the arms in this barred-spiral system. The flow in the region of the spirals can best be described as a regular 'precessing-ellipses flow'.  相似文献   

19.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

20.
We analyse new integral-field spectroscopy of the inner region (central 2.5 kpc) of the spiral galaxy NGC 4321 to study the peculiar kinematics of this region. Fourier analysis of the velocity residuals obtained by subtracting an axisymmetric rotation model from the Hα velocity field indicates that the distortions are global features generated by an   m = 2  perturbation of the gravitational potential which can be explained by the nuclear bar. This bar has been previously observed in the near-infrared but not in the optical continuum dominated by star formation. We detect the optical counterpart of this bar in the 2D distribution of the old stellar population (inferred from the equivalent width map of the stellar absorption lines). We apply the Tremaine–Weinberg method to the stellar velocity field to calculate the pattern speed of the inner bar, obtaining a value of  Ωb= 160 ± 70 km s−1 kpc−1  . This value is considerably larger than the one obtained when a simple bar model is considered. However, the uncertainties in the pattern speed determination prevent us from giving support to alternative scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号