首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By the relativistic mean field theory and relevant weak-interactional cooling theory, the relativistic cooling properties in the conventional and hyperonic neutron star matter are studied. Also a comparison between the relativistic and non-relativistic results after taking consideration of the gravity correction is performed. The results show that the relativistic effect of neutrino emission reduces the neutrino emissivity, luminosity, and the cooling rate of stellar objects, in comparison with the non-relativistic case. In the neutron star matter without hyperon, the amplitude of the cooling rate reduction caused by the relativistic effect is maximal after taking the gravity correction into consideration, it attains 56% for a 2 M neutron star composed of conventional neutron star matter, and in the hyperonic matter the amplitude of reduction is minimal, about 38%.  相似文献   

2.
Hydrodynamically stationary, spherically symmetric accretion onto a neutron star is examined taking the reverse effect of radiation into account. It is assumed that the plasma flow is adiabatic and that radiation is generated in a thin surface layer of the neutron star, where incoming particles are slowed down. It is shown that for stationary accretion, neither a stop, nor a substantial slowing down of the accretion flux is possible for any physically allowed conditions far from the neutron star.  相似文献   

3.
We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with an exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light-bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of low-mass X-ray binaries containing fast-spinning neutron stars.  相似文献   

4.
In an attempt to model the accretion on to a neutron star in low-mass X-ray binaries, we present 2D hydrodynamical models of the gas flow in close vicinity of the stellar surface. First, we consider a gas pressure-dominated case, assuming that the star is non-rotating. For the stellar mass we take   M star= 1.4 × 10−2 M  and for the gas temperature   T = 5 × 106 K  . Our results are qualitatively different in the case of a realistic neutron star mass and a realistic gas temperature of T ≃ 108 K, when the radiation pressure dominates. We show that to get the stationary solution in a latter case, the star most probably has to rotate with the considerable velocity.  相似文献   

5.
6.
We present new population synthesis calculations of close young neutron stars. In comparison with our previous investigation we use a different neutron star mass spectrum and different initial spatial and velocity distributions. The results confirm that most of ROSAT dim radioquiet isolated neutron stars had their origin in the Gould Belt. We predict that about several tens of young neutron stars can be identified in ROSAT All Sky Survey data at low galactic latitudes. Some of these sources also can have counterparts among EGRET unidentified sources.  相似文献   

7.
We have carried out a systematic search for the molecular ion CO+ in a sample of eight protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues for the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.  相似文献   

8.
We present a numerical analysis of the spin evolution of neutron stars in low-mass X-ray binaries, trying to explain the discrepancy in the spin period distribution between observations of millisecond pulsars and theoretical results. In our calculations, we take account of possible effects of radiation pressure and irradiation-induced instability on the structure of the disk, and the evolution of the mass transfer rate, respectively. We report the following results: (1) The radiation pressure in the accretion disk leads to a slight increase of spin periods, and the variation of mass transfer rate caused by the neutron star irradiation can shorten the spin-down phase of evolution. (2) The calculated results of the model combining radiation pressure and irradiation show that the accretion is strongly limited by the radiation pressure in the high mass transfer phase. (3) The accreted mass and fastness parameter can affect the number of systems in the equilibrium state.  相似文献   

9.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   

10.
A full numerical solution is found for the effect of a strongly magnetic star on its accretion disc, for the case of magnetic buoyancy diffusion. As in the previously considered case of turbulent diffusion, the disc becomes disrupted when magnetic and viscous stresses become comparable. A magnetically induced temperature elevation leads to electron scattering opacity and radiation pressure becoming significant far from the stellar surface, with consequent viscous instability and vertical disruption of the disc. This, together with the previous turbulent case, suggests that such a disruption mechanism owing to strongly magnetic accretors is generally operable.  相似文献   

11.
Recently discovered quasi-periodic oscillations in the X-ray brightness of low-mass X-ray binaries are used to derive constraints on the mass of the neutron star component and the equation of state of neutron star matter. The observations are compared with models of rapidly rotating neutron stars which are calculated by means of an exact numerical method in full relativity. For the equations of state we select a broad collection of models representing different assumptions about the many-body structure and the complexity of the composition of superdense matter. The mass constraints differ from their values in the approximate treatment by ∼10 per cent. Under the assumption that the maximum frequency of the quasi-periodic oscillations originates from the innermost stable orbit, the mass of the neutron star is in the range M ∼1.92–2.25 M. The quasi-periodic oscillation in the Atoll-source 4U 1820−30 in particular is only consistent with equations of state that are rather stiff at high densities, which is explainable, so far, only with pure nucleonic/leptonic composition. This interpretation contradicts the hypothesis that the protoneutron star formed in SN 1987A collapsed to a black hole, since this would demand a maximum neutron star mass below 1.6 M. The recently suggested identification of quasi-periodic oscillations with frequencies of about 10 Hz with the Lense–Thirring precession of the accretion disc is found to be inconsistent with the models studied in this work, unless it is assumed that the first overtone of the precession is observed.  相似文献   

12.
13.
14.
15.
Kepler卫星提供的长时序、高精度的光度观测和郭守敬望远镜(LAMOST)提供的大规模光谱观测为研究恒星表面转动周期与富锂巨星锂丰度关系提供了良好的数据.将LAMOST搜寻到的富锂巨星与Kepler观测交叉,获得了619颗共同源,研究了其中295颗有良好观测数据的富锂巨星的表面转动.在205颗有星震学参数的恒星中提取出14颗恒星的转动周期,其中氦核燃烧星(HeB) 11颗,红巨星支(RGB) 2颗, 1颗演化阶段未确定.本样本中的极富锂巨星(A(Li) 3.3 dex)皆为HeB;对于90颗没有星震学参数的样本因而没有依靠星震学手段确定演化阶段的恒星中,有22颗提取出了自转周期.前者的自转探测率为6.8%,显著高于之前工作中大样本巨星2.08%的探测率.同时,此研究首次从自转周期的角度确认了恒星转动与巨星锂增丰存在相关性,在增丰程度较弱时,自转周期分布比较弥散;强锂增丰的星倾向于快速转动.富锂巨星与极富锂巨星在转动速度随锂丰度的演化上展现了两个序列,在转动-锂丰度图上的A(Li)≈3.3 dex处产生第2个下降序列,或许暗示了两者在形成机制上的不同.极富锂巨星的样本中,随巨星锂增丰程度增强,恒星转速加快.这种相关性为由转动引起的额外混合作为富锂巨星形成的机制提供了支持.  相似文献   

16.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

17.
An analysis of ablation processes is made for a fall-back disc with inner and outer radii external to the neutron-star light cylinder. The calculated ablation rate leads, with certain other assumptions, to a simple expression relating the inner radius and mean mass per unit area of any long-lived fall-back disc. Expressions for the torque components generated by interaction with the pulsar wind are obtained. It is not impossible that these could be responsible for small observable variations in pulse shape and spin-down rate but they are unlikely to be the source of the periodic changes seen in several pulsars.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号