首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The contribution of thermal bremsstrahlung to the total microwave flux of a solar flare loop is considered. The total-flux data were obtained on the Nobeyama Radio Heliograph. The calculation of the thermal bremsstrahlung radio flux was based on determining the integrated temperature and number density of the hot flare-loop plasma from its soft X-ray flux, obtained using data from the GOES-10 and GOES-12 satellites. The effect of thermal bremsstrahlung on the total flux and the spectral index of the microwave radiation is insignificant at the burst maximum (F th/F tot < 3%, Δα < 0.2), while the contribution of bremsstrahlung can be substantial during the decay phase of the burst (up to 80%). This results in an appreciable decrease in the observed spectral index (to Δα ~ 1.5). Therefore, when diagnosing the parameters of the accelerated electrons based on the characteristics of their gyrosynchrotron radiation, the most accurate results can be obtained using the emission characteristics obtained near the burst maximum.  相似文献   

2.
Data from the Nobeyama Radioheliograph at 17 GHz with high spatial and temporal resolution are used to detect quasi-periodic pulsations with periods from 55 to 250 s in the thermal component of the microwave emission of a solar flare loop observed on June 2, 2007. Observed pulsations with periods of about 110–120 s are co-phased along the entire loop axis. The observed periodicity is most likely due to modulation of the radio emission by slow magnetoacoustic waves trapped in the filamentary flare loop.  相似文献   

3.
A wavelet analysis of the flare-intensity variations has been carried out for a solar flare observed with the Nobeyama Radioheliograph at 17 and 34 GHz and the spectrometer of Purple Mountain Observatory at 4.5–7.5 GHz. The signals contain a well-pronounced periodicity with a period of P = 14–17 s and stable, coherent behavior at frequencies higher and lower than the peak frequency. We simulated the modulation of the gyrosynchrotron emission by fast sausage magnetoacoustic oscillations for the cases of low and high plasma density in the radio source. The synchronism of the pulsations at high and low frequencies can be realized only in the case of high plasma density, when the low-frequency turnover of the microwave spectrum is due to the Razin effect, not self-absorption. Published in Russian in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 7, pp. 655–664. The article was translated by the authors.  相似文献   

4.
The results of monitoring the flaring activity of Mrk 421 with the XMM-Newton and RXTE orbiting observatories are presented. The ASM/RXTE data show that, during most of the observational period, 2002–2006, the source was in a very active state, with a mean 1.5–12 keV flux equals ∼17 mCrab. Analysis of daily and weekly averaged data shows strong X-ray variability of Mrk 421 on time scales from days to months. The long-term light curve demonstrates a rich variety of variability patterns and a complex hierarchical flare structure, in most cases superimposed on longer trends of rising and decreasing source activity. Quantitative estimates of the variability of Mrk 421 shows evidence of correlations between the source intensity in X-rays and the variability parameters, both for separate years and epochs and for most of the observational period. The soft and hard X-ray components (according to XMM-Newton data) are correlated with each other, and spectral changes (according to ASM/RXTE data) are characterized by increasing hardness with brightening of the object in X-rays. Moderate spectral variability at individual epochs and evidence for an energy dependence of the source variability are also observed. The 2–12 keV fluxes from Mrk 421 detected by XMM-Newton are consistent with the maximum 2–10 keV flux detected by ASCA ∼10 years ago. An analysis of simultaneous day-time-scale variability of Mrk 421 in X-rays (ASM/RXTE) and very-high-energy γ-rays (GT-48 Cherenkov telescope of the Crimean Astrophysical Observatory) in periods of increased activity of the source in December 2002 and April 2004 is also presented. Published in Russian in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 7, pp. 589–602. The article was translated by the authors.  相似文献   

5.
Flux-density variations of the quasar S0528+134 (Nimfa) are analyzed based on long-term monitoring at five radio frequencies between 4.8 and 37 GHz, performed at the Crimean Astrophysical Observatory, the Metsähovi Radio Observatory of Aalto University, and the University of Michigan Radio Astronomy Observatory. The dynamics of a powerful flare in 1996 are analyzed using gamma-ray (0.1–300 GeV), X-ray (2–10 keV, 15–50 keV), and radio observations. The delays of the flare between different spectral ranges and between different radio wavelengths have been measured. The dependence for the delays at different radio wavelengths relative to the X-ray and optical flares is established based on long-term observations in the X-ray, optical, and radio obtained from 2004 to 2013. Multi-frequency monitoring in the radio is used to estimate the orbital and precession periods in the binary supermassive black hole system S0528+134 and the physical characteristics of this system.  相似文献   

6.
Observations of the hard X-ray and radio event of October 27, 2002 are analyzed. This flare was observed from near-Martian orbit by the HEND instrument developed at the Space Research Institute of the Russian Academy of Sciences and installed on the Mars Odyssey satellite. Although this powerful flare was observed far over the eastern solar limb, the extended source associated with the flare was detected by RHESSI at energies up to about 60 keV. The eruptive event was observed in the radio at the Nobeyama Radio Observatory. The properties of the X-ray radiation are used to calculate the spectrum of the accelerated electrons responsible for the observed radiation, assuming that the target is thick for a Martian observer and thin for a terrestrial observer. The results are compared with the results of radio observations. The conditions for electron propagation in the corona are discussed.  相似文献   

7.
8.
The flare source of thermal X-rays above a magnetic arch in the corona arises from the dissipation of the magnetic energy of the current sheet formed at the reconnection of magnetic-field lines. The sources of hard X-rays emitted from the footpoints of the magnetic arch are beams of electrons accelerated in field-aligned currents induced by the Hall electric field generated in the current sheet. Both the hard X-rays detected above the active region and the type III radio emission are radiated by electrons accelerated in the field-aligned currents induced by Alfven waves. The solar cosmic rays are emitted promptly at the instant of the flare. It is important that the Lorentz electric field accelerates protons along the singular magnetic X line. The relativistic protons propagate along the interplanetary magnetic field. These protons have exponential spectra, typical for acceleration occurring in current sheets. A mechanism that is relevant for the generation of delayed cosmic rays, which demonstrate significant anisotropy and a power-law spectrum with γ ∼5, is also discussed.  相似文献   

9.
The impulsive phase of the powerful solar flare of September 13, 2005 (~23:18–23:21 UT) observed in hard X-rays (~25–300 keV) by the RHESSI spacecraft is analyzed. The spatial locations of numerous X-ray sources are compared with the locations of Transition Point (TP) singularities in the magnetic field calculated for flare regions. It is shown that the hard X-ray sources are related to TP singularities, i.e., to possible locations of primary flare energy release. Magnetic field lines expelled from the vicnity of these magnetic singularities end in the chromosphere, near hard X-ray sources. The question of how these multiple magnetic singularities are involved virtually simultaneously in the energy-release process requires further study.  相似文献   

10.
Long-term monitoring data at five radio frequencies from 4.8 to 37 GHz obtained at the Crimean Astrophysical Observatory, Metsahovi Radio Observatory of Aalto University, and the University of Michigan Radio Astronomy Observatory are used to analyze variations of the flux of the Active Galactic Nucleus (AGN) 3C 454.3. The dynamical characteristics of the three latest powerful flares from 2004 to 2010 are analyzed in detail. Observations in the gamma-ray (0.1–300 GeV), X-ray (2–10 kev, 15–50 keV), and optical are also used. Delays in the development of flares at different frequencies are derived. An empirical frequency dependence for the delays of flares from the gamma-ray to the radio is determined, which can be fit using a logarithmic low and remains the same from flare to flare. The physical characteristics of the central region of the AGN 3C 454.3 are used to estimate the size of its Strömgren sphere, taking into account the relevant mechanisms for heating and cooling the medium, as well as the adopted laws for the variation of the density and temperature with distance from the source of ionization. A model for the location of the radiation regions in the jet at various frequency ranges during the development of flares is proposed.  相似文献   

11.
The Chandrayaan-1 mission to the Moon scheduled for launch in late 2007 will include a high energy X-ray spectrometer (HEX) for detection of naturally occurring emissions from the lunar surface due to radioactive decay of the238U and232Th series nuclides in the energy region 20–250 keV. The primary science objective is to study the transport of volatiles on the lunar surface by detection of the 46.5 keV line from radioactive210Pb, a decay product of the gaseous222Rn, both of which are members of the238U decay series. Mapping of U and Th concentration over the lunar surface, particularly in the polar and U-Th rich regions will also be attempted through detection of prominent lines from the U and Th decay series in the above energy range. The low signal strengths of these emissions require a detector with high sensitivity and good energy resolution. Pixelated Cadmium-Zinc-Telluride (CZT) array detectors having these characteristics will be used in this experiment. Here we describe the science considerations that led to this experiment, anticipated flux and background (lunar continuum), the choice of detectors, the proposed payload configuration and plans for its realization  相似文献   

12.
Two solar radio bursts exhibiting narrow-band millisecond pulsations in intensity and polarization are analyzed. There were considerable time delays between the left-and right-circularly polarized components of the radio emission. The observed oscillations of the degree of polarization are due to the different group velocities of the ordinary and extraordinary modes in their propagation from the source to the observer; the frequency dependence of the delay is in excellent agreement with the theoretically calculated group delay in a magnetoactive plasma. It unambiguously follows that the pulsed radio emission is generated near the double upper hybrid frequency by the nonlinear plasma mechanism, since the source emission has a low degree of polarization. In addition to dispersion effects, a Fourier analysis also reveals effects associated with the source inhomogeneity. We detected a frequency drift of pulsations (autodelays) with different signs for different polarization components. This drift suggests that, apart from the dispersion effects, there are also the effects related to inhomogeneity of the radio source. It is shown, in particular, that the upper hybrid modes (generating the radio emission) are unstable in regions with enhanced gradients of the plasma density and/or magnetic field.  相似文献   

13.
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5–0.8 s and 200–280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100–200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01–0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5–10 s and positive or negative frequency drift rates dν/dt=8×10?3 Hz/min or dν/dt=?1.3×10?2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10?3, the ratio of the plasma densities outside and inside the loop ρei≈10?2, and the electrical current flowing along the loop I≈1012 A.  相似文献   

14.
High resolution observations in the region of the Hα, HeII λ 4686, and Hγ lines in the spectrum of the symbiotic binary Z And were performed during a small-amplitude flare at the end of 2002. The profiles of the hydrogen lines were double-peaked, and suggest that the lines may be emitted mainly by an optically thin accretion disk. Since the Hα line is strongly contaminated by emission from the envelope, the Hγ line is used to investigate the properties of the accretion disk. The Hα line has broad wings, believed to be determined mostly by radiation damping, although the high-velocity stellar wind from the compact object in the system may also contribute. The Hγ line has a broad emission component, assumed to be emitted mainly from the inner part of the accretion disk. The HeIIλ 4686 line also has a broad emission component, but is believed to arise in a region of high-velocity stellar wind. The outer radius of the accretion disk can be calculated from the shift between the peaks. Assuming that the orbital inclination can range from 47° to 76°, we estimate the outer radius to be 20–50 R. The behavior of the observed lines can be interpreted in the model proposed for the line spectrum during the first large 2000–2002 flare of this binary.  相似文献   

15.
We report the results of a study of fast variations of the H2O maser emission toward NGC 7538 IRS 1, which is associated with a star-forming region. The study is based on monitoring data in the 1.35 cm line obtained in 1996–2003 on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory (Russia). Periodic flux variations of four long-lived emission features with an average period of about 0.9 year have been detected. The flux variations of these features are correlated, suggesting that the detected variability is a consequence of pulsation of, e.g., stellar wind from the protostar in NGC 7538 IRS 1, with a period of about 0.9 year (0.87 ± 0.03 year). These pulsations are superimposed on long-term variability of the integrated maser emission with a period of 13 years.  相似文献   

16.
 A Raman scattering and X-ray diffraction study of the thermal decomposition of a naturally occurring, ettringite-group crystal is presented. Raman spectra, recorded with increasing temperature, indicate that the thermal decomposition begins at ≈55 °C, accompanied by dehydration of water molecules from the mineral. This is in contrast to previous studies that reported higher temperature breakdown of ettringite. The dehydration is completed by 175 °C and this results in total collapse of the crystalline structure and the material becomes amorphous. The Raman scattering results are supported by X-ray diffraction results obtained at increasing temperatures. Received: 9 July 2001 / Accepted: 14 August 2002  相似文献   

17.
Results of radio observations of the cosmic gamma-ray burst GRB 080319B at 8.45 GHz during the afterglow are reported. The observations were carried out on telescopes of the Zelenchukskaya and Svetloe Observatories of the Institute of Applied Astronomy, Russian Academy of Sciences. Two outbursts in the radio brightness were detected in the afterglow of GRB 080319B. A total of 148 radio observations were performed at 3.5, 6.2, and 13 cm. The observations were conducted in a mode with smooth scanning in elevation, which was also used to update the flux densities of the primary reference sources. The first powerful radio outburst was recorded on March 28, 2008, 6.86d after the gamma-ray burst, when the maximum flux density was F 8.45 GHz = 44 ± 12 mJy. Almost two months later, a second increase in the radio brightness was observed. The flux density monotonically increased from 19 mJy (59.55d) to 34mJy (59.79d) over 6.5 h; 1.17 d later, the flux density fell to 12mJy.At this last epoch, the radio flux demonstrated variability within 3σ on timescales of 9d−10d. The detected radio brightness increases are interpreted in terms of MHD interactions of a fast plasma outflow with a cloud of inhomogeneous surrounding medium. This interaction is accompanied by restructuring of the relativistic plasma outflow; the analysis of this process has been carried out.  相似文献   

18.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

19.
20.
The motion of electrons and positrons in the vacuum magnetosphere of a neutron star with a surface magnetic field of B ≈ 1012 G is considered. Particles created in the magnetosphere or falling into it from outside are virtually instantaneously accelerated to Lorentz factors γ ≈ 108. After crossing the force-free surface, where the projection of the electric field onto the magnetic field vanishes, a particle begins to undergo ultra-relativistic oscillations. The particle experiences a regular drift along the force-free surface simultaneous with this oscillatory motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号