首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using a method suggested by the authors earlier, the long-term trends of the F2-layer critical frequency, foF2 are derived for a set of ionospheric stations with a wide latitudinal and longitudinal coverage. All the trends are found to be negative. A pronounced dependence on geomagnetic latitude is found, the trend magnitude increasing with the latter. No globe scale longitudinal effect in trends is detected. For the majority of the stations there is also a pronounced seasonal effect, the trend magnitude being higher in summer than in winter.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Using the MU radar at Shigaraki, Japan (34.85°N, 136.10°E), we measure the power distribution pattern of VHF radar echoes from the mid-troposphere. The large number of radar beam-pointing directions (320) allows the mapping of echo power from 0° to 40° from zenith, and also the dependence on azimuth, which has not been achieved before at VHF wavelengths. The results show how vertical shear of the horizontal wind is associated with a definite skewing of the VHF echo power distribution, for beam angles as far as 30° or more from zenith, so that aspect sensitivity cannot be assumed negligible at any beam-pointing angle that most existing VHF radars are able to use. Consequently, the use of VHF echo power to calculate intensity of atmospheric turbulence, which assumes only isotropic backscatter at large beam zenith angles, will sometimes not be valid.  相似文献   

9.
It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the “enhanced ion-line” usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.  相似文献   

10.
At dip equatorial stations in the Indian zone, spread-F conditions are known to develop preferentially around midnight during the June solstice (northern summer) months of low solar activity, in association with a distinct increase in F layer height. It is currently held that this onset of spread-F far away from the sunset terminator is due to the generalised Rayleigh-Taylor instability mechanism, with the gravitational and cross-field instability factors (and hence F layer height) playing important roles. We have studied the quarter-hourly ionograms of Kodaikanal (10.2°N; 77.5°E; dip 4°N) for the northern summer months (May-August) of 1994 and 1995 to ascertain the ambient ionospheric conditions against which the post-midnight onset of spread-F takes place. A data sample of 38 nights with midnight onset of spread-F and 34 nights without spread-F is used for the purpose. It is found that a conspicious increase in F layer height beginning around 2100 LT occurs on nights with spread-F as well as without spread-F. This feature is seen in the nocturnal pattern of F layer height on many individual nights as well as of average F layer height for the two categories of nights. The result strongly suggests that the F layer height does not play a pivotal role in the midnight onset of spread-F during the June solstice of solar minimum. The implications of this finding are discussed.  相似文献   

11.
A preliminary analysis of Pc5, ULF wave activity observed with the IMAGE magnetometer array and the EISCAT UHF radar in the post midnight sector indicates that such waves can be caused by the modulation of the ionospheric conductivity as well as the wave electric field. An observed Pc5 pulsation is divided into three separate intervals based upon the EISCAT data. In the first and third, the Pc5 waves are observed only in the measured electron density between 90 and 112 km and maxima in the electron density at these altitudes are attributed to pulsed precipitation of electrons with energies up to 40 keV which result in the height integrated Hall conductivity being pulsed between 10 and 50 S. In the second interval, the Pc5 wave is observed in the F-region ion temperature, electron density and electron temperature but not in the D and E region electron densities. The analysis suggests that the wave during this interval is a coupled Alfven and compressional mode.  相似文献   

12.
13.
14.
15.
16.
Letter to the Editor   总被引:1,自引:0,他引:1  
  相似文献   

17.
《Ground water》1999,37(3):322-322
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号