首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
By using the method of power spectrum combined with band-pass filtering with May—September1982 grid data from ECMWF,the spatial structure and propagation characteristics are tentatively examinedof the SH (Southern Hemisphere) mid-latitude quasi-40-day (ranging from 30—60 days) periodic oscilla-tion (QPO) together with the relation to NH (Northern Hemisphere) summer monsoon,with the result thatthere exists similar periodicity in the development of baroclinicity and activities of cold air at the same latitudes,and in response to this the zonal wind shows profound QPO with a nearly vertical axis of disturbance and thatthe air activities can act as periodic external forcing for the monsoon,which intensifies the west wind on thesouth side of the Mascarene or Australian high,and then the system itself,leading to the reinforcement of theSE trade wind on the north side,followed by the strengthening of cross-equatorial flow that,in turn,causesactive monsoon with its northward march over the eastern part of China.The process is responsible for thelow-frequency oscillation propagated in a meridional direction,which confirms the speculation of theauthor.  相似文献   

2.
青藏高原绕流和爬流的气候学特征   总被引:2,自引:2,他引:0  
李斐  李建平  李艳杰  郑菲 《大气科学》2012,36(6):1236-1252
本文利用1951~2008 年NCEP/NCAR 再分析资料, 通过绕流和爬流方程, 将高原附近表层风场分解为绕流分量和爬流分量两部分, 计算出了实际大气中的绕流和爬流运动的强度, 分别探讨它们的气候态特征。结果表明:高原主体年平均绕流场围绕高原地形并在高原西南部(32°N, 75°E)附近产生分支, 分支点下游的高原主体南部和北部分别表现为气旋性和反气旋性流型;年平均的爬流分量场沿喜马拉雅山脉辐散, 高原主体为偏南上坡风, 东北部为偏北上坡风。夏季绕流场为气旋式流型, 中心位于高原中部(35°N, 90°E)附近;秋季绕流场围绕高原地形边缘基本为一个反气旋流型。夏季, 高原主体偏南风爬流与偏北风爬流在高原南北中线附近辐合, 除夏季外, 沿高原南侧喜马拉雅山脉为爬流辐散区。高原主体和高原附近的关键区内, 绕流和爬流存在不同的季节循环特征。从绕流和爬流分解公式出发, 本文详细探讨了表面流场的绕流和爬流运动各分量对地形高度及地形梯度的依赖性:经向绕流与纬向绕流比值、经向爬流与纬向爬流分量比值为仅依赖于地形高度的定常值。年平均的绕流及爬流矢量强度随着所处地形高度的升高而逐步增强;从区域分布的角度而言, 高原附近绕流强于爬流的区域范围较广, 绕流占主导地位。地形纯动力强迫产生的爬流运动与观测资料中高原附近的垂直运动具有很高的位置对应关系, 但冬季和夏季均存在强度上的差异。  相似文献   

3.
使用1979—2015年欧洲长期天气预报中心所提供的ERA-Interim再分析资料和中国气象局上海台风研究所整编的西北太平洋热带气旋(TC)最佳路径资料,分析了7—8月东亚高空纬向风的季节内振荡(ISO)信号特征及其与登陆中国大陆热带气旋(TC)的关系。结果表明:(1)200 hPa纬向风在副热带、中纬度地区季节内振荡显著,尤其是在纬向西风带中,有两个南北分布的大值中心,方差贡献均超过50%。(2)基于东亚高空纬向风的ISO和EOF典型空间模定义的西风指数(EAWI),可以用来描述东亚高空纬向西风在ISO尺度上的经向移动。(3)在西风指数的ISO负位相期间,登陆中国东南沿岸22 °N以北的TC增多;反之减少。在西风急流出口南侧的副热带区域,200 hPa ISO纬向风向北移动,使纬向西风位置偏北,出现东风异常,从而使西风减弱;TC引导气流为向西的异常,有利于TC登陆中国大陆偏北沿岸;同时有异常的ISO纬向异常东风切变,有利于TC登陆过程的维持。(4)在西风指数的ISO负位相期间,在对流层高层西风急流出口区向南输送的天气尺度的E矢量,在TC登陆地区,出现异常扰动涡度通量的辐合,引起了该区域的西风减弱。   相似文献   

4.
In this paper,we use a two-dimensional primary equation model which contains (1) heating ofradiation,(2) heating of condensation,and (3) transfers of sensible and latent heat between air andthe underlying surface.To investigate the causes for the formation of the eastern North Pacific sum-mer monsoon,the data at 110°W are obtained and winds at underlying surface and at 200 hPa aremodified under the conditions (1) removing topography and (2) changing meridional sea surface tem-perature (SST) gradient.In the numerical modification,we find that by removing the topography,the center's location ofthe eastern North Pacific summer monsoon does not change,but the intensity of the summer monsoonis weakened.Also the onset of the summer monsoon is delayed to the end of May.The tropical east-erly jet is weakened obviously,even changes to westerly wind.On the other hand,we find that theSST gradient along 110°W influences the eastern North Pacific summer monsoon distinctly.If theSST gradient is decreased,the center of the southwest wind near 12°N does not exist any more.theintensity of the whole summer monsoon becomes very weak and the circulation pattern of the summermonsoon also changes a lot.Finally,we indicate that both topography and meridional SST gradient play important roles inthe occurrence of the eastern North Pacific summer monsoon.The meridional SST gradient is themost important factor that triggers the summer monsoon and the topography along 110°W influencesthe intensity and the onset time of the summer monsoon there mostly.  相似文献   

5.
In this study, the phase-locking of El Nino Southern Oscillation (ENSO) in a coupled model with different physical parameter values is investigated. It is found that there is a dramatic change in ENSO phase-locking in response to a slight change in the Tokioka parameter, which is a minimum entrainment rate threshold in the cumulus parameterization. With a smaller Tokioka parameter, the model simulates ENSO peak in the boreal summer season rather than in the winter season as observed. It is revealed that the differences in climatological zonal sea surface temperature (SST) gradient and its associated mean state changes are crucial to determine the phase-locking of ENSO. In the simulations with smaller Tokioka parameter values, climatological zonal SST gradient during the boreal summer is excessively large, because the zonally-asymmetric SST change (i.e., SST increase is relatively smaller over the eastern Pacific) is maximum during the boreal summer when the eastern Pacific SST is the coolest of the year. The enhanced climatological zonal SST gradient in boreal summer reduces the convection over the eastern Pacific, which leads to a weakening of air–sea coupling strength. The minimum coupling strength during summer prevents SST anomalies from further development in the following season, which favors SST maximum during summer. In addition, enhanced zonal SST gradient and resultant thermocline shoaling over the eastern Pacific lead to excessive zonal advective feedback and thermocline feedback. Atmospheric damping is also weakened during boreal summer season. These changes due to feedback processes allow an excessive development of SST anomalies during the summer time, and lead to a summer peak of ENSO. The importance of basic state change for the ENSO phase-locking is also validated in a multi-model framework using the Coupled Model Intercomparison Project phase-3 archive. It is found that several of the climate models have the same problem in producing a summer peak of ENSO. Consistent with the simulations with different physical parameter values, these models have minimum air–sea coupling strength during the boreal summer season. Also, they have stronger climatological zonal SST gradient and shallower climatological thermocline depth over the eastern Pacific during the boreal summer season.  相似文献   

6.
本文采用1981~2010年夏季5~10月逐日的(10°S~50°N,40°E~160°E)范围内向外长波辐射OLR(Outgoing Longwave Radiation)资料和850 hPa层纬向风速资料(简称U850)作经验EOF(Empirical Orthogonal Function)分解,重新计算北半球夏季大气低频振荡BSISO(Boreal Summer Intraseasonal Oscillation)指数,并分析了其演变特征及其对华北夏季降水的影响规律。结果表明:(1)在北半球夏季印度洋—西北太平洋地区存在两种明显的低频信号,一种是BSISO1,空间分布呈西北—东南倾斜状,从热带印度洋向东北方向传播,振荡周期约为45 d;另一种是BSISO2,空间分布呈西南—东北倾斜状,从西北太平洋向西北方向传播,振荡周期约为20 d。(2)BSISO主要是通过影响大气环流和水汽输送来影响华北夏季降水过程。在500 hPa层,BSISO信号会造成华北地区东部副热带高压位置南北移动和强度发生变化来影响华北夏季降水;在850 hPa层,BSISO信号会通过伴随的气旋性或反气旋性异常环流影响向华北的水汽输送来影响华北夏季降水。(3)虽然热带大气季节内振荡MJO(Madden-Julian Oscillation)信号在全年都存在,但其变化在冬半年尤其冬季振幅最大,在夏季最小。BSISO信号变化在夏半年尤其夏季振幅最大。因此,利用热带大气低频信号开展延伸期降水过程预测,冬半年可以重点考虑MJO的影响,夏半年重点考虑BSISO的影响。  相似文献   

7.
利用1979-2007年卫星观测日平均OLR资料以及NCEP/DOE第2套再分析资料中的风场资料,采用有限区域波一频分析、合成分析等方法,分析对比对流层高、低层风场与对流场所表征的热带北半球夏季季节内振荡(BSISO)各种传播模态谱分布气候特征及其年际异常。结果表明:各要素反映的BSISO各种模态的气候特征及其年际变化存在一定差异,总体而言对流层低层风(850hPa纬向风或经向风)与对流比较一致。850hPa经向风(纬向风)所反映的纬向(经向)传播BSISO谱分布气候特征与对流情况最相似。在ENSO发展年,850hPa经向风反映的赤道东传波加强趋势与对流较为一致;850hPa纬向风、经向风反映的北传波变化趋势都与对流相似。在ENSO衰减年,850hPa纬向风(经向风)反映的赤道东传波(赤道外西传波)减弱趋势与对流较为一致;对流以及850hPa经向风、200hPa纬向风和200hPa经向风4种要素都能体现南海及周边地区北传波明显减弱这一特征。对流和850hPa纬向风所反映的北传波与印度洋偶极子模态之间关系一致。  相似文献   

8.
夏季青藏高原热源低频振荡对我国东部降水的影响   总被引:10,自引:2,他引:8       下载免费PDF全文
利用NCEP/NCAR逐日再分析资料及长江中下游降水资料, 诊断和分析了长江中下游地区旱年1978年、涝年1999年青藏高原东部大气热源与降水季节内振荡的关系, 并着重讨论了青藏高原低频热力过程的经、纬向传播, 结果表明:1978年夏季青藏高原东部大气热源存在10~20 d周期为主的振荡, 交叉谱分析表明:青藏高原东部热源与长江中下游降水在10~20 d频段存在显著相关, 且青藏高原激发的周期为10~20 d的低频振荡热源在纬向上呈现出驻波形式; 1999年夏季青藏高原东部热源存在30~60 d周期为主的振荡, 热源与长江中下游降水在30~60 d频段存在显著相关。  相似文献   

9.
生成于东部平原地区的江淮切变线和西部青藏高原地区的高原切变线,都处在东亚副热带相同纬度带上。为深化对地形高度迥异的江淮切变线和高原切变线的认识与理解,基于ERA-interim再分析资料和合成分析方法,从切变线与暴雨关系、切变线三维结构特征、切变线附近风场与环流特征以及切变线结构演变中的热力机制等方面对二者进行对比研究。结果表明:(1)江淮切变线分为暖切变线、冷切变线、准静止切变线和低涡切变线4类,高原切变线分为高原横切变线和高原竖切变线2类。江淮切变线与高原切变线均与暴雨关系密切,夏季,有近70%的江淮切变线会产生暴雨,暖切变线暴雨对江淮地区切变线暴雨的雨量贡献最大,低涡切变线暴雨的降水强度最大但发生频率较低;近60%的高原横切变线给高原主体地区带来暴雨,超过55%的竖切变线造成高原东侧及其邻近地区暴雨。(2)江淮切变线与高原切变线均为边界层系统,特征层次分别位于850 hPa和500 hPa。时空尺度上,江淮冷切变线和高原横切变线水平尺度分别可达1000 km和2000 km,垂直伸展厚度分别可达5 km和2 km,生命期分别可达48 h和96 h;江淮切变线和高原横切变线在垂直方向上均有从低到高向北倾斜的特征。(3)江淮冷切变线与高原横切变线风场与环流特征存在差异,江淮冷切变线北侧为东北风,南侧为西南风;高原横切变线东、西两段风场有所不同,其西段类似于江淮冷切变线,东段在不同发展阶段风场有明显变化。(4)江淮冷切变线与高原横切变线的动力结构和热力结构存在差异。动力结构上,二者均位于正涡度带内,正涡度中心强度都在强盛阶段达到最大。热力结构上,江淮冷切变线附近低空锋区特征明显,其西段位于暖湿区内,东段位于干冷区内;高原横切变线南侧具有明显的高温、高湿特征,切变线北侧存在锋区结构。(5)切变线附近的大气非绝热加热与高原横切变线和江淮冷切变线演变关系密切,垂直非均匀加热作用是高原横切变线和江淮冷切变线发展增强最为重要的因子。二者热力结构有差异,减弱机制不同,干冷空气的侵入会导致高原横切变线强度减弱甚至消亡,江淮冷切变线的强度减弱则与南方暖湿空气的向北侵入有关。   相似文献   

10.
北京地区奥运期间大风灾害的定量评估   总被引:5,自引:3,他引:2  
根据北京1971~2006年大风历史资料,对奥运期间(6~10)大风灾害的风险进行了评估.北京的春季大风日数比较多,7~9月大风日数比较少;平均每年6~10月奥运期间出现大风总日数通常为2~3天,最多5天,夏季是适合北京举办奥运会的季节.为了定量评估奥运期间大风灾害的风险,统计了1971~2006年6~10月每次出现大风日的站点数并进行归一化处理,得出奥运期间大风灾害不同等级的空间分布.在大风灾害后果等级小值时,整个北京地区大风灾害风险分布基本一致;在大风灾害后果大值时,北京的大风风险区呈南北走向分布,南部特别是西南部大风风险大,此特点可能与夏季雷雨大风及北京地形有关.  相似文献   

11.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   

12.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

13.
2007 年南海夏季风季节内振荡的北传及影响因子   总被引:1,自引:0,他引:1  
利用2007年全球降水气候计划GPCP(the Global Precipitation Climatology Project)卫星红外窗口导出的全球降水指数GPI(the Global Precipitation Index)的日降水资料及频率-波数分析方法,分析2007年南海夏季风季节内振荡(Intraseasonal Oscillation,ISO)的传播特征,并使用美国国家环境预报中心(NCEP)/美国大气研究中心(NCAR)再分析的逐日资料,探讨影响其传播的主要因子.结果表明,南海夏季风ISO有明显的北传趋势,并且明显比南传分量占优.影响南海夏季风ISO北传的主要因子是平均纬向风垂直切变和平均经向风对异常水汽的输送.之所以异常经向风对平均水汽的输送及海-气相可作用的影响在南海地区不重要,而在印度季风区有一定的贡献,是因为平均水汽和纬向风分布在两个地区的差异.  相似文献   

14.
The nonlinear local Lyapunov exponent (NLLE) method is adopted to quantitatively determine the predictability limit of East Asian summer monsoon (EASM) intensity indices on a synoptic timescale. The predictability limit of EASM indices varies widely according to the definitions of indices. EASM indices defined by zonal shear have a limit of around 7 days, which is higher than the predictability limit of EASM indices defined by sea level pressure (SLP) difference and meridional wind shear (about 5 days). The initial error of EASM indices defined by SLP difference and meridional wind shear shows a faster growth than indices defined by zonal wind shear. Furthermore, the indices defined by zonal wind shear appear to fluctuate at lower frequencies, whereas the indices defined by SLP difference and meridional wind shear generally fluctuate at higher frequencies. This result may explain why the daily variability of the EASM indices defined by zonal wind shear tends be more predictable than those defined by SLP difference and meridional wind shear. Analysis of the temporal correlation coefficient (TCC) skill for EASM indices obtained from observations and from NCEP’s Global Ensemble Forecasting System (GEFS) historical weather forecast dataset shows that GEFS has a higher forecast skill for the EASM indices defined by zonal wind shear than for indices defined by SLP difference and meridional wind shear. The predictability limit estimated by the NLLE method is shorter than that in GEFS. In addition, the June-September average TCC skill for different daily EASM indices shows significant interannual variations from 1985 to 2015 in GEFS. However, the TCC for different types of EASM indices does not show coherent interannual fluctuations.  相似文献   

15.
El Ni?o(厄尔尼诺)事件对东亚和南亚次年夏季降水影响及其机理已经得到充分研究,但其对夏季青藏高原降水是否有显著影响还不清楚。本研究根据1950年后El Ni?o事件次年衰减期演变速度,对比分析衰减早型与晚型El Ni?o事件对南亚季风区与青藏高原夏季(6~9月)季节平均和月平均气候影响差异。结果显示在衰减早型次年夏季热带太平洋海温转为La Ni?a(拉尼娜)型且持续发展,引起Walker环流上升支西移,印度洋和南亚季风区上升运动加强,同时激发异常西北太平洋反气旋(NWPAC),阿拉伯海异常气旋和伊朗高原异常反气旋性环流响应,增加7~9月对流层偏南气流和印度洋水汽输送,导致南亚和高原西南侧降水偏多。衰减晚型次年6~8月热带太平洋El Ni?o型海温仍维持,印度洋暖异常海温显著,对应的印度洋和南亚季风区上升运动较弱,NWPAC西伸控制南亚季风区,阿拉伯海和中西亚分别呈现异常反气旋和气旋性环流,导致青藏高原西风加强,水汽输送减少,南亚北部和高原降水一致偏少。结果表明:(1)El Ni?o显著影响次年青藏高原西南部夏季季节和月平均降水与温度,是印度和高原西南部夏季降水显著相关的重要原因;(2)El Ni?o衰减快慢速度对南亚和青藏高原西南部夏季季节内降水的影响有着重要差异。  相似文献   

16.
段安民  吴国雄 《气象学报》2003,61(4):447-456
对1958~1999年的7月份NCEP/NCAR再分析资料中青藏高原区域大气热源强度(整层气柱的总非绝热加热率)做旋转经验正交函数分析,结果表明该区域内大气热源强度的空间分布特征复杂,各地差异显著。前4个REOF型的加热中心位于高原东北部、高原西南部、克什米尔地区以及高原东南部地区上空。小波分析还表明各空间型都有2~4a的变化周期。文中计算了前4个RPC与东亚中、低空纬向风(U)、经向风(V)、纬向水汽通量(Q_u)、经向水汽通量(Q_v)的相关系数,并用这些相关系数构造矢量,进而分析其流场和水汽通量散度场,发现高原不同区域的大气加热异常所对应的东亚大气环流形势及降水也大不相同,由此表明,在研究高原加热对中国气候的影响时,应注意加热的空间分布特征。  相似文献   

17.
Arctic sea ice concentration (ASIC) in boreal autumn exhibits prominent interannual variability since 1979. The physical mechanism responsible for the year-to-year variation of ASIC is investigated through observational data analyses and idealized numerical modeling. It is found that the ASIC interannual variability is closely associated with the anomalous meridional circulations over the Northern Hemisphere, which is further linked with the tropical sea surface temperature (SST) forcing. A tropics-wide SST cooling anomaly leads to an enhanced meridional SST gradient to the north of the equator in boreal summer, generating strengthened and northward shifting Hadley circulation over the Northern Hemisphere. Consequently, the meridional circulations are enhanced and pushed poleward, leading to an enhanced descending motion at the North Pole, surrounded by an ascending motion anomaly; the surface outflow turns into easterly anomalies, opposing the mean-state winds. As a result, positive cloudiness and weakened surface wind speed emerge, which reduce ASIC through changes in the surface latent heat flux and the downward longwave radiation.  相似文献   

18.
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.  相似文献   

19.
Based on four reanalysis datasets including CMA-RA, ERA5, ERA-Interim, and FNL, this paper proposes an improved intelligent method for shear line identification by introducing a second-order zonal-wind shear. Climatic characteristics of shear lines and related rainstorms over the Southern Yangtze River Valley(SYRV) during the summers(June-August) from 2008 to 2018 are then analyzed by using two types of unsupervised machine learning algorithm,namely the t-distributed stochastic neighbor embeddin...  相似文献   

20.
为了研究20世纪80年代以来的江淮切变线及暴雨的气候态特征,从而为未来的江淮切变线暴雨的业务预报和科研提供参考,利用欧洲中心风场再分析资料和地面气象站基本气象要素日值数据集(V3.0)的降水资料,通过纬向风的经向切变、相对涡度和纬向0风速线3个客观判据,统计了1981—2013年6—7月江淮地区暴雨、切变线以及切变线暴雨。结果表明:1981—2013年6—7月,江淮地区有30.2 d出现暴雨,有33.2 d出现切变线,22.0 d出现切变线暴雨,切变线暴雨日数占切变线日数的近2/3,占暴雨日数的近3/4;6—7月江淮地区出现切变线和暴雨的日数有不显著的年际增长趋势,增长率比江淮切变线暴雨大一个量级,而后者的日数在近33年基本维持不变。江淮地区的切变线日数、暴雨日数和切变线暴雨日数2000年前年际波动较大,2000年后年际波动较小。6—7月江淮地区的暴雨日数、切变线日数和切变线暴雨日数均存在一定的年代际变化特征,且三者的年代际变化特征较为一致,在1981—2007年,江淮地区降水量的年代际变化与暴雨日数、切变线日数和切变线暴雨日数的年代际变化较为一致。1995年前,6—7月江淮切变线暴雨日数存在2—3年的周期,1995年后没有显著的周期。在6月上中旬和7月中下旬,江淮切变线暴雨日数存在2—4 d的周期,在6月下旬到7月上旬,江淮切变线暴雨日数不存在明显周期,切变线暴雨日数在梅雨期内稳定维持,且江淮切变线暴雨最集中发生在6月下旬到7月上旬的梅雨期内,说明梅雨期降水以切变线引发的降水为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号