首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase transition behavior of two types of terrestrial tridymite; crystals from Topaz Mountain in the Thomas Range of northwestern Utah and Smith Peak in Plumas County, California; were investigated. The Topaz Mtn. samples were characterized at room temperature using optical, X-ray diffraction (Debye-Scherrer, rotation, and Laue), and transmission electron microscopy (TEM) methods. Least-squares refinement of the powder data yielded an orthorhombic cell with a = 17.072 Å, b = 9.923 Å, and c = 16.291 Å. The tridymite is designated PO-2 (nomenclature of Nukui and Nakazawa 1980). This material is complexly twinned and has severe stacking disorder parallel to [001]. Additional X-ray experiments were performed on one Plumas County crystal and four Topaz Mtn. crystals during heating from room temperature to a minimum of 320° C with one run attaining a maximum temperature of 532° C. Crystal to crystal behavior was somewhat variable suggesting kinetic barriers to transition controlled by the detailed structural state of each crystal.The Laue results indicated that the transition behavior of these multiple twinned tridymites could be conveniently divided into two classes: discontinuous and continuous. The discontinuous diffraction effects were generally associated with major structural transitions. Continuous diffraction effects involved gradual structural distortions of the tridymite framework that occurred over discrete ranges of temperature. Upon cooling, many of the minor effects were not reversible while the major transitions were reversible with some temperature hysteresis. Comparison of initial and final diffraction patterns indicated that the starting and ending structures were very similar but not identical. From the five experiments, three distinct patterns emerged based on the major transitions observed: Type I behavior (Topaz Mtn.) characterized by three major changes at 175–187° C, 283–302° C, and 348–352° C, Type II behavior (Plumas Co.) characterized by one major transition between 283–295° C, and Type III behavior (Topaz Mtn.) characterized by one major change between 159–165° C.  相似文献   

2.
A laboratory study was executed to investigate the effect of surfactants to enhance sorption of polycyclic aromatic hydrocarbon (PAH) contaminants in loess soil. Phenanthrene and naphthalene were chosen as organic contaminant indicators in loess soil modified by the cation surfactant hexadecyltrimethylammonium (HDTMA) bromide. The kinetic behavior of sorption during transport in natural and modified loess soil was studied. The results indicated that sorption rate in the cation surfactant modified loess soils was at least 3 times faster than that of the natural soil. A first-order kinetics model fitted the sorption data well for both soils. The sorption rates of the two organic compounds were related to their primary residual quantity on the soils. The experiments showed that sorption amounts approached constant values approximately within 30 and 90 min for naphthalene and phenanthrene at 298–318 K, respectively. The rate constants, however, displayed negative correlation with increasing temperature. With changing temperature, the activation energy was calculated at –6.196–1.172 kJ/mol for naphthalene and –28.86–15.70 kJ/mol for phenanthrene at 298–318 K. The results can be used to predict the sorption kinetics of phenanthrene and naphthalene in loess soils, and in a wider perspective, be used to better understand the transport of petroleum contaminants in the soil environment.  相似文献   

3.
We propose a thermodynamic model for the mixing of gases in aqueous sodium chloride solutions valid to high pressures, high temperatures, and high ionic strength solutions. Our model couples Henry's Law with any equation of state to reproduce experimental data in the aqueous-rich liquid and gas-rich vapor region. In our model, the chemical potential of the solute in the brine is related to the chemical potential of the solute in pure water through salting-out coefficients. The model reproduces all crucial phenomena of binary (gas–water) and pseudo-binary (gas–water–salt) vapor–liquid mixtures below their critical point. We applied the model to reproduce the phase behavior of nitrogen in water and NaCl brines. Results and discussions are shown.  相似文献   

4.
Amino acid enantiomeric (D/L) ratios in the mollusk Mercenaria are compared with recently published biostratigraphic and/or U-series solitary coral data from 22 Quaternary localities on the central and southern Atlantic Coastal Plain. In all cases, local relative aminostratigraphic sequences are consistent with relative ages inferred from U-series or biostratigraphic data, although occasionally more depositional events are recognized by aminostratigraphic than biostratigraphic methods. However, if the U-series data are used as age calibrations for the D/L values, latitudinal trends of “isochronous” D/L values are highly variable and conflict with trends expected from the present temperature gradient, which is smooth and nearly linear between 45° and 25° N. Age estimation can be performed independently of the U-series data using a kinetic model that relies on the assumption that Pleistocene temperature gradients have also been smooth functions of latitude, although significantly steeper than the present temperature gradient. Within the uncertainties of this assumption, kinetic model age estimates for localities in the coastal plain fall into the following groups: 70,000–130,000 yr, 200–250,000 yr, 300,000–400,000 yr, 500,000–600,000 yr, 700,000–800,000 yr, and > 1,000,000 yr. Major conflicts between these model age estimates are observed for localities near Charleston, South Carolina and in central Virginia. These conflicts could indicate that the basic temperature assumptions of aminostratigraphy are incorrect, and that apparent local aminostratigraphic sequences (clusters of different D/L values) could be due to factors other than age difference. Alternatively, some of the U-series dates may be only minimum ages for these localities.  相似文献   

5.
Variations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July–September) temperature reconstruction that spans A.D. 1593–1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s–early 1700s followed by a warmer period, cooling in the late 1700s–early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550–1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.  相似文献   

6.
Using the Chiller computer program, we performed modeling of the mechanisms of the joint transport and deposition of Au and Sb from various ore-forming solutions during the formation of Au-Sb deposits. Three models are considered by the example of the Uderei Au-Sb deposit in the Yenisei Ridge: (1) simple cooling (cooling only), (2) iso-enthalpy boiling (P = f(T)), and (3) solution–rock interaction (rock titration model). The behavior of Sb(III) and Au(I) in the system Au–Sb–Fe–Cu–Pb–Zn–As–H2O–Cl–H2S–CO2 under hydrothermal conditions was studied. It is shown that both weakly alkaline (near-neutral) and reduced acidic Feaq2+-enriched low-chloride high-CO2 and high-chloride hydrothermal solutions play a crucial role in the formation of gold parageneses of Au-Sb ores.  相似文献   

7.
The structural behavior of -eucryptite (LiAlSiO4) has been investigated using infrared (IR) spectroscopy over a temperature range of 20 to 900 K and FT-Raman spectroscopy at room temperature. IR reflectance measurements show that -eucryptite possesses high reflectivity in the far-IR region, as is consistent with its reported superionic conductivity along the c-axis. On heating, the Li-related IR bands near 246 and 300 cm–1 (with A2 symmetry) broadened and weakened dramatically, presumably as a result of Li+ positional disordering along the structural channels parallel to c. The disordering process appears to induce a framework distortion, as is evidenced by the broadening of some vibrations of Si(Al)–O with increasing temperature. A change in slope in the temperature dependence of the phonon frequency near 300 cm–1 and the linewidth of the 760 cm–1 band at 715 K indicates that Li becomes completely disordered above this temperature. In addition, the temperature dependence of the linewidth for the 760 cm–1 band exhibits an additional change in slope at 780 K, implying the existence of an intermediate state within this temperature range. The detailed structure of this intermediate phase, however, needs further study. Our IR data provide no indication of structural changes between room temperature and 20 K.  相似文献   

8.
The Kundelungu foreland, north of the Lufilian arc in the Democratic Republic of Congo, contains a number of various vein-type and stratiform copper mineralisations. The geodynamic context and metallogenesis of these mineral occurrences remain enigmatic. Currently, the vein-type Cu–Ag ore deposit at Dikulushi is the most significant deposit in the region. Mineralisation at Dikulushi comprises two major styles: 1) a polysulphide assemblage (Zn–Pb–Fe–Cu–As) within brecciated rocks along an anticlinal closure; and 2) a vein-hosted Cu–Ag assemblage. Petrographic and fluid inclusion studies indicate that the early Zn–Pb–Fe–Cu–As assemblage formed from a high-salinity Ca–Na–Cl fluid of modest temperature (135–172 °C). The later, economically more significant vein-related Cu–Ag mineralisation formed from intermediate salinity, lower temperature (46–82 °C) Na–Cl fluids. Weathering of the sulphide minerals resulted in a supergene enrichment with the formation of secondary Cu-minerals.  相似文献   

9.
It is often observed that dynamic recrystallization results in a recrystallized grain size distribution with a mean grain size that is inversely related to the flow stress. However, it is still open to discussion if theoretical models that underpin recrystallized grain size–stress relations offer a satisfactorily microphysical basis. The temperature dependence of recrystallized grain size, predicted by most of these models, is rarely observed, possibly because it is usually not systematically investigated. In this study, samples of wet halite containing >10 ppm water (by weight) were deformed in axial compression at 50 MPa confining pressure. The evolution of the recrystallized grain size distribution with strain was investigated using experiments achieving natural strains of 0.07, 0.12 and 0.25 at a strain rate of 5×10−7 s−1 and a temperature of 125 °C. The stress and temperature dependence of recrystallized grain size was systematically investigated using experiments achieving fixed strains of 0.29–0.46 (and one to a strain of 0.68) at constant strain rates of 5×10−7–1×10−4 s−1 and temperatures of 75–240 °C, yielding stresses of 7–22 MPa. The microstructures and full grain size distributions of all samples were analyzed. The results showed that deformation occurred by a combination of dislocation creep and solution-precipitation creep. Dynamic recrystallization occurred in all samples and was dominated by fluid assisted grain boundary migration. During deformation, grain boundary migration results in a competition between grain growth due to the removal of grains with high internal strain energy and grain size reduction due to grain dissection (i.e. moving boundaries that crosscut or consume parts of neighbouring grains). At steady state, grain growth and grain size reduction processes balance, yielding constant flow stress and recrystallized grain size that is inversely related to stress and temperature. Evaluation of the recrystallized grain size data against the different models for the development of mean steady state recrystallized grain size revealed that the data are best described by a model based on the hypothesis that recrystallized grain size organizes itself in the boundary between the (grain size sensitive) solution-precipitation and (grain size insensitive) dislocation creep fields. Application of a piezometer, calibrated using the recrystallized grain size data, to natural halite rock revealed that paleostresses can vary significantly with temperature (up to a factor of 2.5 for T=50–200 °C) and that the existing temperature independent recrystallized grain size–stress piezometer may significantly underestimate flow stresses in natural halite rock.  相似文献   

10.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

11.
The spinel–quartz-bearing Al–Fe granulites from Ihouhaouene (In Ouzzal, West Hoggar) have a migmatitic appearance with quartzo-feldspathic layers intercalated with restitic layers. These granulites are characterized by a hercynitic spinel–quartz assemblage typical of high grade terranes. The stability of the spinel–quartz assemblage is attributed to an elevation of temperature (from 800 to >1100 °C) at high pressures (10–11 kbar), followed by an isothermal decompression from 9 to 5 kbar, an evolution typical of the In Ouzzal clockwise PT path. The Al–Fe granulites’ history can be subdivided into different successive crystallisation stages. During the first stage, the spinel–quartz assemblage formed, probably following a prograde event that also produced partial melting. During a second stage, the primary spinel–garnet–sillimanite–quartz paragenesis broke-down to give rise to the secondary assemblage. The metamorphic evolution and phase relations during this stage are shown in PTX pseudosections calculated for the simple FMASH system. These pseudosections show that the orthopyroxene–cordierite–spinel symplectite appeared during a high temperature decompression, as a product of destabilisation of garnet in sillimanite-free microdomains with high XMg values. At the same time, the spinel–quartz association broke-down into cordierite in Fe-rich microdomains. Average pressure and temperature estimates for the orthopyroxene–spinel–garnet–cordierite–quartz association are close to the thermal peak of metamorphism (1000 ± 116 °C at 6.3 ± 0.5 kbar). With decreasing temperatures garnet–sillimanite corona developed from the breakdown of the primary spinel–quartz assemblage in the Fe-rich microdomains, whereas cordierite–spinel formed at the expense of primary sillimanite and garnet in the Mg-rich microdomains.  相似文献   

12.
A simple impulse-decay model driven by the history of atmospheric dust loading from Greenland can match the history of glacial–interglacial changes in atmospheric carbon dioxide concentration rather accurately, if model parameters are tuned within physically possible ranges; forcing with the Greenland temperature record produces a similarly good match. Calculations using southern forcing do not match as accurately. These results leave open the possibility of northern control of glacial–interglacial carbon dioxide changes.  相似文献   

13.
Polycrystalline aggregates of phlogopite, talc, and brucite have been grown hydrothermally from their constituent oxides at 300–600° C, 3–5 kb, and compressed 10–30% in short-term experiments (typically 30 minutes). Under hydrostatic conditions, approximately random orientation of crystals results. When the specimen is strained at high temperature, either during or after growth of the minerals, a preferred orientation of basal planes normal to the axis of compression results. Since a similar result is obtained by straining at room temperature after growth of the minerals, the mechanism of orientation is probably mainly mechanical rotation after formation. Microscope examination showed that the preferred orientation is most marked in coarser grains of the aggregates. A second kind of foliation is defined in some specimens by closely spaced, narrow domains within which coarse grains are slightly rotated. These domains occur in conjugate sets symetrically oriented at about 45° to the axis of compression. They are interpreted as shear domains and are geometrically similar to incipient strain-slip cleavage in foliated rocks. The experiments may represent likely behavior in geological situations where the temperature or time scale precludes recrystallization during deformation, but they are probably not directly revelant to cases of axial-plane cleavage where reorientation through an influence of stress or strain during recrystallization is believed to have occurred. No unequivocal indication of the latter process was obtained in the experiments.  相似文献   

14.
Nongla, a typical karst dynamic system (KDS) monitoring site, is located at Nongla Village, Mashan County, Guangxi, China. The data from a Greenspan CTDP300 multichannel data logger indicates that the KDS is highly sensitive to environmental changes. Multi-day and diurnal physico-chemical composition of epikarst spring water is quite different under different climatic conditions. During a day with no rainfall, water temperature and air temperature have similar variations. Electrical conductivity (EC) has good positive correlation with pH value and water temperature. During rainstorms, the physico-chemical composition of the spring water is initially strongly effected by dilution, pH and EC drop rapidly. However, half to one hour later, EC returns to normal and the CO2 effects will be the dominant physical effect. This is due to the high fissure rates and high permeability in the epikarst zone. Dilution effects were observed during the entire rainstorm event,whereas, it only acts during the earliest period of light rain. Therefore, it is necessary to examine the water–rock–CO2 combination as a whole system to explain the hydrochemical behavior of epikarst processes.  相似文献   

15.
Thermal and rheological structures of the Xisha Trough, South China Sea   总被引:8,自引:0,他引:8  
The Xisha Trough, located in the northwest of the South China Sea (SCS) mainly rifted 30 Ma ago, has been a failed rift since the cessation of the seafloor spreading of the NW subbasin. Based on the velocity–depth model along Profile OBH-4 across the Xisha Trough, a seven-layer density–depth model is used to estimate density structure for the profile. The relationship between seismic velocity and radiogenic heat production is used to estimate the vertical distribution of heat sources in the lower crust. The 2-D temperature field is calculated by applying a 2-D numerical solution of the heat conduction equation and the thermal lithosphere thickness is obtained from the basalt dry solidus (BDS). The rheology of the profile is estimated on the basis of frictional failure in the brittle regime and power-law steady-state creep in the ductile regime. Rheological model is constructed for a three-layer model involving a granitic upper crust, a quartz diorite lower crust and an olivine upper mantle. Gravity modeling supports basically the velocity–depth model. The Moho along Profile OBH-4 is of relatively high heat flow ranging from 46 to 60 mW/m2 and the Moho heat flow is higher in the trough than on the flanks. The depth of the “thermal” lithospheric lower boundary is about 54 km in the center, deepens toward two sides, and is about 75 km at the northern slope area and about 70 km at the southern Xisha–Zhongsha Block. Rheological calculation indicates that the two thinnest ductile layers in the crust and the thickest brittle layer in the uppermost mantle lie in the central region, showing that the Xisha Trough has been rheologically strengthened, which are mainly due to later thermal relaxation. In addition, the strengthening in rheology during rifting was not the main factor in hampering the breakup of the Xisha Trough.  相似文献   

16.
Compressional wave velocities have been measured in granite, granulite, amphibolite and peridotite specimens under conditions of high temperature up to 700°C and confining pressures up to 6 kbar. In general, velocity increases with pressure and decreases with temperature.Quartz-bearing rocks show an anomalous behavior of their compressional wave velocities. The velocity—temperature relations exhibit a velocity-“deep” due to the high—low inversion of the constituent quartz crystals. The intrinsic effect of temperature on velocities is hard to determine due to thermal expansion and consequent loosening of the structure. The opening of new cracks and the widening of old cracks causes a large decrease in compressional wave velocities. The minimum pressure to prevent damage at a given temperature should, therefore, be about 1 kbar/100°C.The values obtained at these conditions are considered to be most nearly correct as intrinsic properties of the compact aggregates. Velocity anisotropies at high confining pressures and high temperatures correlate with preferred lattice orientation of the constituent minerals. The effect of dimensional orientation and microcracks on seismic anisotropy seems to be of minor importance in dry rocks. It is the more eliminated the higher the confining pressure. The data do not support the concept of a velocity maximum in depth of 10–20 km.  相似文献   

17.
The inter-annual variation and linear trends of the surface air temperature in the regions in and around the Bay of Bengal have been studied using the time series data of monthly and annual mean temperature for 20–40 years period within 1951–1990. The study area extends from Pusma Camp of Nepal in the north and Kuala Lumpur of Malaysia in the south and between 80--100 ° E. The annual variation of temperature has also been studied using the mean monthly temperature for the variable time frames 1961–1975, 1976–1990 and 1961–1990. The trend of temperature has been analyzed using linear regression technique with the data from 1961–1990, which showed that the warming trend is dominant over the study areas except for a few stations. It has been found that Nepal shows predominant warming trends. Bangladesh and the adjacent areas of India and the northern part of Bay of Bengal adjacent to the Bangladesh coast have shown strong warming trends of the annual temperature with maximum at Dhaka (0.037 °C/year). The near equatorial zone, i.e., southern India, Sri Lanka and part of Thailand and Malaysia (Kuala Lumpur) shows warming trends in the annual mean temperature with strong warming at Pamban and Anuradhapura (around 0.04 °C/year). The cooling trends have been observed at a few stations including Port Blair, Yangoon and Cuttack. Further analysis shows the presence of prominent ENSO scale of variations with time period 4–7 years and 2–3 years for almost all the stations. The decadal mode with T >7 years is present in some data series. The results of the variations of temperature with respect to the Southern Oscillation Index (SOI) show that SOI has some negative correlation with temperature for most of the stations except those in the extreme northeast. It has been found that positive anomaly of temperature has been observed for El Niño events and negative anomaly for the La Nina events.  相似文献   

18.
Diffusion of 40Ar in hornblende   总被引:8,自引:0,他引:8  
Measured radiogenic 40Ar loss from two compositionally contrasting hornblendes following isothermal-hydrothermal treatment have provided model diffusion coefficients in the temperature range of 750° C to 900° C. Eight experiments using a hornblende (77–600) with a Mg/(Mg +Fe) ratio of 0.72 yield a linear array on an Arrhenius plot with a slope corresponding to an activation energy of 66.1 kcal-mol–1 and a frequency factor of 0.061 cm2-sec–1, assuming spherical geometry for the mineral aggregate. Five experiments undertaken on a hornblende (M Mhb-1) with a Mg/(Mg+Fe) ratio of 0.36 show similar behavior to the Mgrich sample, suggesting that the diffusivity of Ar in hornblendes is not sensitive to the Mg/Fe ratio.These data are consistent with kinetic information obtained from a geological experiment using the thermal effect of a granitoid intrusion. Together these data yield an activation energy of 64.1±1.7 kcal-mol–1 and a frequency factor of 0.024± 0.011 0.053 cm2-sec–1. For a hornblende with an effective diffusion radius of 80 m, these diffusion parameters predict closure temperatures between 578° C and 490° C for cooling rates in the range 500 to 5° C-Ma–1.  相似文献   

19.
The Spanish Central System (SCS) has been subjected to repeated deformation and fluid flow events which have produced both sulphide-bearing and barren vein systems. Although several hydrothermal episodes took place between 300 and 100 Ma, fluid circulation during the Permian was especially important, giving rise to a range of different types of deposits. This study presents a multidisciplinary approach leading to the characterisation of the chemistry and age of the hydrothermal fluids that produced the As–(Ag) mineralised stockwork of Mónica mine (Bustaviejo, Madrid). Fluid inclusion data indicate the presence of two different fluids. An initial ore stage (I) formed from a low- to moderate salinity (3–8 wt.% eq. NaCl) H2O–NaCl–CO2–CH4 fluid, at minimum trapping temperature of 350±15 °C and 0.3 kbar. A second H2O–NaCl fluid is found in three types of fluid inclusions: a high temperature and low salinity type (340±20 °C; 0.8–3.1 wt.% eq. NaCl) also associated to ore stage I, a moderate temperature and very low salinity type (160–255 °C; 0–1.5 wt.% eq. NaCl) represented in ore stage III, and a very low temperature and hypersaline type (60–70 °C; 30–35 wt.% NaCl), unrelated to the mineralising stages and clearly postdating the previous types. 40Ar–39Ar dating on muscovite from the early As–Fe stage (I) has provided an age of 286±4 Ma, synchronous with the late emplacement phases of La Cabrera plutonic massif (288±5 Ma) and with other Permian hydrothermal events like Sn–W skarns and W–(Sn) sulphide veins. δ18O of water in equilibrium with stage I quartz (5.3–7.7‰), δD of water in equilibrium with coexisting muscovite (−16.0‰ to −2.0‰), and sulphide δ34S (1.5–3.6‰) values are compatible with waters that leached metamorphic rocks. The dominant mechanism of the As–(Ag) deposition was mixing and dilution processes between aqueous–carbonic and aqueous fluids for stage I (As–Fe), and nearly isobaric cooling processes for stages II (Zn–Cu–Sn) and III (Pb–Ag). The origin and hydrothermal evolution of As–(Ag) veins is comparable to other hydrothermal Permian events in the Spanish Central System.  相似文献   

20.
Experiments (P=6.9 kb; T=900–1000°C) on four crustal xenoliths from Kilbourne Hole demonstrate the varying melting behavior of relatively dry crustal lithologies in the region. Granodioritic gneisses (samples KH-8 and KH-11) yield little melt (<5–25%) by 925°C, but undergo extensive (30–50%) melting between 950 and 1000°C. A dioritic charnockite (KH-9) begins to melt, with the consumption of all modal K-feldspar, by 900°C. It is as fertile a melt source as the granodiorites at lower temperatures, but is outstripped in melt production by the granodiorite gneisses at high temperature, yielding only 26% melt by 1000°C. A pelitic granulite (KH-12) proved to be refractory (confirming earlier predictions based on geochemistry) and did not yield significant melt even at 1000°C. All melts have the composition of metaluminous to slightly peraluminous granites and are unlikely to be individually recognizable as magma contaminants on the basis of major element chemistry. However, the relative stability of K-feldspar during partial melting will produce recognizable signatures in Ba, Eu, K/Ba, and Ba/Rb. Melts of KH-11, which retains substantial K-feldspar throughout the melting interval, are generally low in Ba (<500–800 ppm), have high K/Ba and low Ba/Rb (est.) (62–124 and 1–3, respectively). Melts of KH-9, in which all K-feldspar disappears with the onset of melting, are Ba-rich [2000–2600 ppm, K/Ba=16–22; Ba/Rb (est.) =25–47]. Melts of KH-8 have variable Ba contents; <500 ppm Ba at low temperature but >900 ppm Ba in high-temperature melts coexisting with a K-feldspar-free restite. Although REE were not measured in either feldspar or melt, the high Kspar/melt Kds for Eu suggests that the melts coexisting with K-feldspar will have strong negative Eu anomalies. Isotopic and trace element models for magma contamination need to take into account the melting behavior of isotopic reservoirs. For example, the most radiogenic (and incompatible element-rich) sample examined here (the pelitic granulite,87Sr/86Sr=0.757) is refractory, while samples with far less radiogenic Sr (87Sr/86Sr=0.708-0.732) produced substantial melt. This suggests that, in this area, the isotopic signature of contamination may be more subtle than expected. The experimental results can be used to model the petrogenesis of Oligocene volcanic rocks exposed 150 km to the NW of Kilbourne Hole, in the Black Range in the Mogollon-Datil volcanic field. The experimental results suggest that a crustal melting origin for the Kneeling Nun and Caballo Blanco Tuffs is unlikely, even though such an interpretation is permitted by Sr isotopes. Curstal contamination of a mantle-derived magma best explains the chemical and isotopic characteristics of these tuffs. Both experimental and geochemical data suggest that the rhyolites of Moccasin John Canyon and Diamond Creek could represent direct melts of granodiorite basement similar, but not identical, to the Kilbourne Hole granodiorites, perhaps slightly modified by crystal fractionation. The absence of volcanic rocks having87Sr/86Sr>0.74 in the region is consistent with the refractory character of the pelitic granulite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号