首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
— Operational models that use solutions of the advection-diffusion equation based on more realistic assumptions than that of homogeneous wind and eddy diffusivity coefficients are presented. In particular a new parameterization for a model using a solution that accepts wind and eddy diffusivity profiles described by power functions of height is introduced. The performance of the model with the new parameterization was assessed using experimental data sets.  相似文献   

2.
Lagrangian trajectory methods are often applied as deterministic transport models, where transport is due strictly to advection without taking into account stochastic elements of particle dispersion, which raises questions about validity of the model results. The present work investigates the impact of horizontal eddy diffusivity for a case study of coastal pollution in the Gulf of Finland, where the pollutants are assumed to originate from a major fairway and are transported to the coast by surface currents. Lagrangian trajectories are calculated using the TRACMASS model from velocity fields calculated by the Rossby Centre circulation model for 1982 to 2001. Three cases are investigated: (1) trajectory calculation without eddy diffusivity, (2) stochastic modelling of eddy diffusivity with a constant diffusion coefficient and (3) stochastic modelling of eddy diffusivity with a time- and space-variable diffusion coefficient. It is found that the eddy diffusivity effect increases the spreading rate of initially closely packed trajectories and the number of trajectories that eventually reach the coast. The pattern of most frequently hit coastal sections, the probability of hit to each such section and the time the pollution spends offshore are virtually invariant with respect to inclusion of eddy diffusivity.  相似文献   

3.
Development of thoughts on tracer transport mechanisms in the stratosphere which lead to new approaches to two-dimensional modeling of the tracer problem is reviewed.Three-dimensional motions of individual air parcels affected by a planetary wave are investigated theoretically, treating a steady, upward propagating wave in a uniform flow. It is shown that trajectories of air parcels are of elliptical form when projected onto the meridional plane and that they have no mean meridional or vertical motion, even though the usual zonal Eulerian-mean vertical motion exists. The origin of the difference between the mean air parcel motion and the Eulerian-mean motion is discussed.On the basis of the knowledge of air parcel motion, two approaches to two-dimensional modeling are considered. The generalized Lagrangian mean motion (quasi-zonal weighted mean taken over a meandering material tube), recently introduced by Andrews and McIntyre, is identical with the mean motion of an air parcel in a steady state. Such a mean meridional circulation may be used for advecting a tracer in the meridional plane in a two-dimensional model. The transport effect is represented solely by the advection and an eddy transport does not appear in this scheme, to a first approximation.The finding that trajectories of air parcels are elliptical necessitates a reexamination of the Reed-German eddy diffusivity currently used in two-dimensional chemical-dynamical models. By applying a mixing length type hypothesis, we derive an eddy diffusivity formula for use in Eulerian-mean calculations, which, in the case of a conservative tracer is dominated by an anti-symmetric tensor. The eddy transport due to this anti-symmetric tensor diffusivity is of advective type (not diffusive) and has the effect of taking the Stoke drift effect into account, when used in the usual Eulerian-mean formulation.  相似文献   

4.
In this study, the earthquake damage response of the concrete gravity dams is investigated with considering the effects of dam–reservoir interaction. A continuum damage model which is a second-order tensor and includes the strain softening behavior is selected for the concrete material. The mesh-dependent hardening technique is adopted such that the fracture energy dissipated is not affected by the finite element mesh size. The dynamic equilibrium equations of motion are solved by using the improved form of the HHT-α time integration algorithm. Two dimensional seismic analysis of Koyna gravity dam is performed by using the 1967 Koyna earthquake records. The effects of damage on the earthquake response of concrete gravity dams are discussed. Comparison of the Westergaard and Lagrangian dam–reservoir interaction solutions is made. The effects of viscous damping ratio on the damage response of the dam are also studied.  相似文献   

5.
6.
Ocean transport and dispersion processes are at the present time simulated using Lagrangian stochastic models coupled with Eulerian circulation models that are supplying analyses and forecasts of the ocean currents at unprecedented time and space resolution. Using the Lagrangian approach, each particle displacement is described by an average motion and a fluctuating part. The first one represents the advection associated with the Eulerian current field of the circulation models while the second one describes the sub-grid scale diffusion. The focus of this study is to quantify the sub-grid scale diffusion of the Lagrangian models written in terms of a horizontal eddy diffusivity. Using a large database of drifters released in different regions of the Mediterranean Sea, the Lagrangian sub-grid scale diffusion has been computed, by considering different regimes when averaging statistical quantities. In addition, the real drifters have been simulated using a trajectory model forced by OGCM currents, focusing on how the Lagrangian properties are reproduced by the simulated trajectories.  相似文献   

7.
A thermal diffusive process in the Earth's core is principally enhanced by small-scale flows that are highly anisotropic because of the Earth's rapid rotation and a strong magnetic field. This means that a thermal eddy diffusivity should not be a scalar but a tensor. The effect of such anisotropic tensor diffusivity, which is to be prescribed, on dynamics in the Earth's core is investigated through numerical simulations of magnetoconvection in a rapidly rotating system. A certain degree of anisotropy has an insignificant effect on the character, like kinetic and magnetic energies, of magnetoconvection in a small region with periodic boundaries in the three directions. However, in a region with top and bottom rigid boundary surfaces, kinetic and magnetic energies of magnetoconvection can be altered by the same degree of anisotropy. This implies that anisotropic tensor diffusivity affects on dynamics in the core, in particular near the boundary surfaces.  相似文献   

8.
The turbulent advection-diffusion mathematical model in three-dimensional space is solved by a mixed finite element finite difference method. Linear finite elements in the vertical direction and central finite differences in the horizontal directions are used coupled with the Galerkin error minimization procedure. The integration in time is performed in fractional steps (one explicit one implicit) by splitting the differential operator. The method is illustrated by application to the three-dimensional movement of suspended sediment. Its accuracy is checked by comparison to analytical solutions and its efficiency is gauged relative to finite elements and implicit finite difference solutions for two-dimensional suspended sediment transport over a dredged channel.  相似文献   

9.
Andrew Lane 《Ocean Dynamics》2005,55(5-6):541-548
The development and application of a Lagrangian particle-tracking model to simulate sediment transport in the Mersey Estuary (UK) is described. Each of the particles (up to a million in total) is advected horizontally by the 3-D tidal currents. Related vertical movements are: (1) downwards by settlement at a prescribed velocity w s and (2) both upwards and downwards by a distance related to the vertical eddy diffusivity. In a novel departure from traditional practice, where initial distributions of surficial sediments are specified, all particles are introduced at the seaward boundary of the model. Provenance studies indicate surficial sediments are overwhelmingly of marine origin. For the predominant fine sediments, ‘cyclical convergence’ in suspended sediment concentrations is approximated after about two spring-neap tidal cycles. Comparisons are shown between the suspended sediment concentrations and net deposition rates computed by this model against observed values and earlier computations utilising both 1-D and 3-D Eulerian models. While all of these results are in broad agreement, the flexibility of the Lagrangian approach for simulating flocculation, consolidation and mixed sediments illustrates its future potential.  相似文献   

10.
We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) tensor is derived for flows, symmetric about the vertical axis in a layer. For convective rolls we demonstrate that MED is never below molecular magnetic diffusivity. For cell patterns possessing the symmetries of a rectangle, critical values of molecular magnetic diffusivity for the onset of small- and large-scale magnetic field generation are the same. No instances of negative MED in hexagonal cells have been detected. A family of plan-forms has been found numerically, where MED is negative for molecular magnetic diffusivity over the threshold for the onset of small-scale magnetic field generation. However, the region in the parameter space, where large-scale dynamo action is observed, is small.  相似文献   

11.
Since the true Earth is 3-D in nature, a three-dimensional (3-D) inversion has clear advantages over lower dimensional inversions. We utilized a 3-D magnetotelluric (MT) inversion code, WSINV3DMT, to obtain a realistic resistivity model using a long period MT data set collected in the Northwest Sabalan geothermal field in Ardabil, Iran. The apparent resistivity and phase curves, the magnetic induction vectors, the impedance polar diagrams and the rotational invariant of impedance tensor, indicate a complex 3-D conductivity structure. After setting up the model parameters and designing the appropriate block discretization, we performed the 3-D inversions for two sets of observed data; one set includes the full MT impedance tensor and another set contains only off-diagonal elements of the MT impedance. The final model was selected according to the relative magnitude of the data misfit and the model norm with respect to various Lagrangian multipliers. The results of this study illustrate the 3-D inversion of the off-diagonal elements of MT impedance tensor is precisely enough to explain the structures related to the geothermal source. The obtained results were compared with the results of available 2-D models and they are then interpreted using all of the geological and drilling data of the area. The main outcome of this study is the precise delineation of the geometry of geothermal source that is located at the center of the study area with a surface coverage of about 7 km2.  相似文献   

12.
A random walk model to describe the dispersion of pollutants in shallow water is developed. By deriving the Fokker-Planck equation, the model is shown to be consistent with the two-dimensional advection-diffusion equation with space-varying dispersion coefficient and water depth. To improve the behaviour of the model shortly after the deployment of the pollutant, a random flight model is developed too. It is shown that over long simulation periods, this model is again consistent with the advection-diffusion equation. The various numerical aspects of the implementation of the stochastic models are discussed and finally a realistic application to predict the dispersion of a pollutant in the Eastern Scheldt estuary is described.  相似文献   

13.
In this study, we propose a new method to determine full moment tensor solution for induced seismicity. This method generalizes the full waveform matching algorithm we have developed to determine the double-couple (DC) focal mechanism based on the neighbourhood algorithm. One major difference between the new method and the former one is that we adopt a new misfit function to constrain the candidate moment tensor solutions with respect to a reference DC solution in addition to other misfit terms characterizing the waveform matching. Through synthetic tests using a real passive seismic survey geometry, the results show the new constraint can help better recover the DC components of inverted moment tensors. We further investigate how errors in the velocity model and source location affect the moment tensor solution. The synthetic test results indicate that the constrained inversion is robust in recovering both the DC and non-DC components. We also test the proposed method on several real induced events in an oil/gas field in Oman using the same observation system as synthetic tests. While it is found that the full moment tensor solutions without using the DC constraints have much larger non-DC components than solutions with the DC constraints, both solutions are able to fit the observed waveforms at similar levels. The synthetic and real test results suggest the proposed DC constrained inversion method can reliably retrieve full moment tensor solutions for the induced seismicity.  相似文献   

14.
A class of analytic, periodic solutions of the heat conduction equation in a non-uniform soil is derived. The class may be characterized by the fact that the speed of the temperature wave varies according to the square root of the soil diffusivity (a function of soil depth). In addition it is shown that the constant soil solution is the limiting case when the rate of change with depth of diffusivity and thermal conductivity become very small. The solutions may be regarded as general whenever temperature analysis is restricted to small values of depth or whenever the soil parameters vary slowly. For all other cases the class of solutions possess the additional property that the rate of change of conductive capacity varies directly as the product of the bulk density and specific heat of the soil. A particular temperature profile is given for the case when the diffusivity varies as the nth power of depth.  相似文献   

15.
The main objective of the LAgrangian Transport EXperiment (LATEX) project was to study the influence of coastal mesoscale and submesoscale physical processes on circulation dynamics, cross-shelf exchanges, and biogeochemistry in the western continental shelf of the Gulf of Lion, Northwestern Mediterranean Sea. LATEX was a five-year multidisciplinary project based on the combined analysis of numerical model simulations and multi-platform field experiments. The model component included a ten-year realistic 3D numerical simulation, with a 1 km horizontal resolution over the gulf, nested in a coarser 3 km resolution model. The in situ component involved four cruises, including a large-scale multidisciplinary campaign with two research vessels in 2010. This review concentrates on the physics results of LATEX, addressing three main subjects: (1) the investigation of the mesoscale to submesoscale processes. The eddies are elliptic, baroclinic, and anticyclonic; the strong thermal and saline front is density compensated. Their generation processes are studied; (2) the development of sampling strategies for their direct observations. LATEX has implemented an adaptive strategy Lagrangian tool, with a reference software available on the web, to perform offshore campaigns in a Lagrangian framework; (3) the quantification of horizontal mixing and cross-shelf exchanges. Lateral diffusivity coefficients, calculated in various ways including a novel technique, are in the range classically encountered for their associated scales. Cross-shelf fluxes have been calculated, after retrieving the near-inertial oscillation contribution. Further perspectives are discussed, especially for the ongoing challenge of studying submesoscale features remotely and from in situ data.  相似文献   

16.
Abstract

The magnetic influence on a turbulent plasma also produces a complicated structure of the eddy diffusivity tensor rather than a simple and traditional quenching of the eddy diffusivity. Dynamo models in plane (galaxy) and spherical (star) geometries with differential relation are developed here to answer the question whether the dynamo mechanism is still yielding stable configurations. Magnetic saturation of the dynamos is always found—at magnetic energies exceeding the energy-equipartition value.

We find that the effect of magnetic back-reaction on the turbulent diffusivity depends highly on whether the dynamo is oscillatory or not. The steady modes are extremely influenced. They saturate at field strengths strongly exceeding its turbulence-equipartition value. Subcritical excitation is even found for strong seed fields. The oscillating dynamos, however, only provide a small effect. Hence, the strong over-equipartition of the internal solar magnetic fields revealed by studies of flux-tube dynamics cannot be explained with the theory presented. Also the run of the cycle frequency with the dynamo number is too smooth in order to explain observations of stellar chromospheric activity.  相似文献   

17.
The heat flow equation in cylindrical coordinates is solved numerically for any general distribution of thermal diffusivity. The temperature stabilization of a borehole is considered, and solutions for the case where thermal diffusivity is a function of radial distance from the borehole are obtained and compared to solutions for uniform diffusivity. The results are discussed in terms of thermal diffusivities that are different for the well contents and for the surrounding material. It is found that the approach to formation temperature is affected by differences between well contents and the surrounding region.  相似文献   

18.
We present the distribution of226Ra in eight vertical profiles from the eastern Pacific. The profiles are located along a meridional trend near 125°W, from 43°S to 29°N. Surface226Ra concentrations are about 7 dpm/100 kg, except for the two stations south of 30°S where the higher values are due to the Antarctic influence. Deep waters show a distinctive south-to-north increase in the226Ra content, from about 26 to 41 dpm/100 kg near the bottom. Unlike in the Atlantic and Antarctic Oceans, the effect of226Ra injection from bottom sediments is clearly discernible in the area. The presence of this primary226Ra can be traced up to at least 1–1.5 km above the ocean floor, making this part of the sea bed among the strongest source regions for the oceanic226Ra. Numerical solutions of a two-dimensional vertical advection-diffusion model applied to the deep (1.2–4 km)226Ra data give the following set of best fits: upwelling velocity(Vz) = 3.5m/yr, vertical eddy diffusivity(Kz) = 0.6cm2/s, horizontal (north-south) eddy diffusivity(Ky) = 1 × 107cm2/s, and water-column regeneration flux of226Ra(J) = 3.3 × 10?5dpmkg?1yr?1 as an upper limit. These parametric values are in general agreement with one-dimensional (vertical) model fits for the Ra-Ba system. However, consideration of226Ra balance leads us to suspect the appropriateness of describing the vertical exchange processes in the eastern Pacific with constantVz and Kz. If future modeling is attempted, it may be preferable to treat the area as a diffusion-dominant mixing regime with depth-dependent diffusivities.  相似文献   

19.
20.
Similarity solutions to the second boundary value problem of unsaturated flow are studied in one-dimensional, semi-infinite porous media with the soil-water diffusivity proportional to some power of the water content. The existence and uniqueness of two types of similarity solutions to the problem are investigated and the properties of these solutions are presented. It is shown that these two types of similarity solutions exist and that they may not be unique for every parameter range studied. The use of the similarity solutions is discussed for the experimental determination of soil-water diffusivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号