首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

2.
U–Th decay series isotopes, δ18O and Si measurements in the river estuarine waters and sediments of the polluted Hooghly estuary as well as the surface waters of the Bay of Bengal, its high salinity end member, are reported. Dissolved Si indicates that there are probably two mixing regimes, dissolved U behaviour is nonconservative and δ18O behaves conservatively in the overall estuarine region. Isotopes of reactive elements, viz. 234Th and 210Po, are removed from the estuarine waters in <2 days and <1 month, respectively, which is due to high suspended matter (30–301 mg l−1). 228Ra and 226Ra are profusely released into the estuarine waters in the low to mid-salinity regions.As expected, the opposite trend is observed in the case of estuarine sediments and suspended matter. Reactive isotopes of Th, 210Pb and 210Po are enriched, whereas Ra isotopes are depleted with respect to their parent nuclides in the estuarine sediments and suspended matter. 232Th/Al ratio appears well suited to study the distribution and mixing of the bed load sediments of the Ganga–Brahmaputra (G–B) and the Hooghly rivers with those from other rivers on the Bay of Bengal floor.  相似文献   

3.
In this study, we examine the distribution and carbon stable isotope signature of dissolved organic carbon (DOC) and humic substances (HS) along a salinity gradient in the Altamaha and Satilla River estuaries. The maximum DOC concentrations in the Altamaha and Satilla were 10 and 29 mg C l−1, respectively, though concentrations were similar at the mouth of both estuaries. There was a decrease in HS content of DOC from 50 to 80% at the head of the estuaries to 10% at salinities higher than 30‰. The δ13C DOC varied between −25.5 and −19‰ and between −27 and −21‰ in the Altamaha and Satilla estuaries, respectively. The tendency towards more depleted δ13C DOC in the Satilla, especially in the lower salinity portion of this estuary, suggests greater terrestrial inputs in the Satilla than in the Altamaha. Seasonal fluctuations were observed in the form of increased (two to three times) range in DOC concentration, heavier δ13C DOC and increased proportion of estuarine–marine-derived DOC (average enrichment of δ13C DOC from +1 to +2) during low river flow (July–October). The δ13C HS in both rivers showed a similar trend, but was consistently more depleted than DOC, with an average range from −28 to −24.5‰. This suggests that HS have larger proportions of terrestrial components (a maximum of >60% at the mouth of the estuary) than DOC. The less depleted δ13C values of DOC in comparison with HS indicate a different source for the non-humic (non-HS) component of DOC (range in δ13C non-HS, −22 to −16‰). That source could either be the decomposition of detrital material derived from saltmarsh environments or microalgal-derived DOC of estuarine or marine origins.  相似文献   

4.
The C/N and stable C and N isotope ratios (δ13C, δ15N) of sedimentary and suspended particulate matter were determined in the Schelde Estuary. Suspended matter was divided into 2 to 5 size fractions by centrifugation. Four major pools of organic matter were recognized: riverine, estuarine, marine and terrestrial materials. Terrestrial organic matter (δ13C≈−26‰, δ15N≈3.5‰, C/N≈21) is important for the sedimentary pool, but suspended matter is dominated by the marine (δ13C≈−18‰, δ15N≈9‰, C/N≈8), riverine (δ13C≈−30‰, δ15N≈9‰, C/N≈7.5) and estuarine (δ13C≈−29‰, δ15N≈15‰, C/N≈8) end-members. In the upper estuary, the suspended matter size fractions vary systematically in their carbon and nitrogen biogeochemistry, with the small particles having low C/N ratios, depleted δ13C and enriched δ15N values relative to large particles. Moreover, sedimentary and suspended matter differ significantly in terms of C/N ratios (17 vs. 8.9), δ13C (−26.3 vs. −28.9‰) and δ15N (+6.9 vs. 12.0‰). In the lower estuary, suspended matter fractions are similar and sedimentary and suspended organic matter differ only in terms of δ13C (−23.5 vs. −20.1‰). Our data indicate that autochthonous organic matter contributes significantly to the total suspended matter and that the suspended organic matter composition cannot be explained in terms of conservative mixing of riverine and terrestrial sources on the one hand and marine sources on the other hand.  相似文献   

5.
To unravel the factors that regulate DOC dynamics in the freshwater tidal reaches of the Schelde estuary, DOC concentration and biodegradability were monitored in the upper Schelde estuary and its major tributaries. Although the Schelde estuary possesses a densely populated and industrialized catchment, our data suggest that the bulk of DOC in the freshwater tidal reaches is not derived from waste water. This was concluded from the low biodegradability of DOC (on average 9%), DOC concentrations that are close to the mean for European rivers (4.61 mg l−1) and the absence of an inverse relationship between DOC and discharge. Most DOC originating from waste water being discharged in tributaries of the estuary appears to be remineralised before these tributaries reach the main estuary. Although dense phytoplankton blooms were observed in the upper estuary during summer (up to 700 μg chl a l−1), these blooms did not appear to produce large quantities of DOC in the freshwater tidal reaches as DOC concentrations were low when phytoplankton biomass was high. The fact that DOC concentrations were high in winter and decreased in summer suggests a predominantly terrestrial source of DOC in the freshwater tidal reaches of the Schelde estuary.  相似文献   

6.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   

7.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

8.
The detailed distribution of algal chlorophyll and carotenoid pigments was determined around the halocline (freshwater-seawater interface) in the Krka Estuary on the east coast of the Adriatic Sea; in May 1988. After collection of water along the estuary, particulate matter was extracted and analyzed for pigments by high-performance liquid chromatography coupled with absorbance and fluorescence detection. Bottom marine waters were characterized by lower chlorophyll a (chl a) concentrations than encountered in surface waters, decreasing downstream from 0.50 μg l−1 to 0.16 μg l−1 at the marine end-member. The highest concentrations of chl α (up to 26.34 μg l−1) were found in the interfacial layer, an particularly at one station located off the city of ibenik, where high inputs of nutrients supported the accumulation of living algae at the halocline. Fucoxanthin was the most abundant carotenoid, which indicates a euryhaline dominance of diatoms in the estuary, whereas the dinoflagellate-derived carotenoid peridinin was confined to the interfacial and bottom saline waters of the inner estuary. High concentrations of alloxanthin and chl b were found in the interfacial layer, which also suggests an accumulation of Cryptophyceae and green algae in the inner estuary. Phaeophorbides showed higher concentrations in bottom waters than in surface waters, whereas the highest concentrations occurred in the interfacial layer. These high levels could reflect a density trapping of dead cells in an early degradation state, as suggested by the importance of allomerized chl a and chlorophyllide a vs. total chl a, or of faecal pellets originating from zooplankton grazing in the interfacial layer.  相似文献   

9.
Measurements of sub-surface light attenuation (Kd), Secchi depth and suspended particulate material (SPM) were made at 382 locations in transitional, coastal and offshore waters around the United Kingdom (hereafter UK) between August 2004 and December 2005. Data were analysed statistically in relation to a marine water typology characterised by differences in tidal range, mixing and salinity. There was a strong statistically significant linear relationship between SPM and Kd for the full data set. We show that slightly better results are obtained by fitting separate models to data from transitional waters and coastal and offshore waters combined. These linear models were used to predict Kd from SPM. Using a statistic (D) to quantify the error of prediction of Kd from SPM, we found an overall prediction error rate of 23.1%. Statistically significant linear relationships were also evident between the log of Secchi depth and the log of Kd in waters around the UK. Again, statistically significant improvements were obtained by fitting separate models to estuarine and combined coastal/offshore data – however, the prediction error was improved only marginally, from 31.6% to 29.7%. Prediction was poor in transitional waters (D = 39.5%) but relatively good in coastal/offshore waters (D = 26.9%).SPM data were extracted from long term monitoring data sites held by the UK Environment Agency. The appropriate linear models (estuarine or combined coastal/offshore) were applied to the SPM data to obtain representative Kd values from estuarine, coastal and offshore sites. Estuarine waters typically had higher concentrations of SPM (8.2–73.8 mg l−1) compared to coastal waters (3.0–24.1 mg l−1) and offshore waters (9.3 mg l−1). The higher SPM values in estuarine waters corresponded to higher values of Kd (0.8–5.6 m−1). Water types that were identified by large tidal ranges and exposure typically had the highest Kd ranges in both estuarine and coastal waters. In terms of susceptibility to eutrophication, large macrotidal, well mixed estuarine waters, such as the Thames embayment and the Humber estuary were identified at least risk from eutrophic conditions due to light-limiting conditions of the water type.  相似文献   

10.
Distribution and seasonal variability of dissolved organic carbon (DOC) and surface active substances (SAS) were studied along the depth profile (15 m) in a small eutrophicated and periodically anoxic sea lake (Rogoznica Lake, Eastern Adriatic coast) in 1996 and 1997. The range of DOC concentrations was characteristic for productive coastal marine ecosystems (60% of samples in the range of 1–2 mg l−1and 40% between 2 and 3 mg l−1). Distribution of SAS concentrations was uniform and shifted toward higher concentrations in comparison to other coastal areas in the Adriatic Sea. Eutrophication in the lake is generated by nutrient recycling under anaerobic conditions. Systematically higher concentrations of chlorophyll a, DOC and SAS were determined at the chemocline in the bottom layer (10–12 m) than in the upper water layer (0·5–2 m). Seasonal variability of organic matter was discussed regarding distributions of microphytoplankton (cells >20 μm) and photosynthetic pigments as well as oxygen and salinity changes along the depth profile. The dissolved oxygen saturation reaching up to 300% in the water layer between 8 m and 10 m depths in May and June 1996, was correlated with enhanced concentrations of phytoplankton biomass (reflected as chl a and b, fucoxanthin, peridinin, zeaxanthin) and increased concentrations of DOC and SAS.  相似文献   

11.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

12.
Purine and pyrimidine bases in marine environmental particles collected in Harima-Nada, the Seto Inland Sea, Japan, were investigated by high performance liquid chromatography.Purines and pyrimidines concentrations varied from 0.3 to 9.3 μg l−1 (n=20) for suspended matter, and 0.3 to 0.6 mg g−1 (n=10) for sinking particles. A good correlation was found between chlorophyll a and purine+pyrimidine bases in suspended matter, indicating that these bases contained in suspended matter originated from phytoplankton.A comparison between several compositional data of the suspended matter and the sinking particles, namely CN ratio, composition of purines and pyrimidines, and percentages of the nitrogen bases relative to total particulate organic nitrogen, demonstrates that the sinking particles were different from suspended matter. Also, from the variety of purine and pyrimidine concentrations of marine particle samples, it was estimated that the decomposition rate of these bases seemed more rapid than decomposition rates of amino acids reported in our earlier study.  相似文献   

13.
Observations of resuspended diatoms in the shallow waters (<60 cm) of the turbid tidal edge are described for single sites on two tidal flats–the Molenplaat in the Westerschelde estuary, and the Hond in the Ems-Dollard estuary, The Netherlands. High concentrations of chlorophyll-a (chl-a) were observed in the trailing edge of the ebbing tide in water depths of <20 cm, after which concentrations decreased markedly. Peak mean values were 19 μg chl-a l−1 in 10 cm of water at the Molenplaat, and 45 μg chl-a l−1 in 5 cm of water at the Hond. Similar trends were observed on the flooding tide, although peak values were far less pronounced (6 and 30 μg chl-a l−1 respectively). Microscopic examination of the diatom community within the turbid tidal edge at the Molenplaat revealed that peaks in biomass were caused by suspended benthic diatoms, as well as the large centric diatom Coscinodiscus sp., particularly on the ebb tide. Planktonic diatoms other than Coscinodiscus sp. were more randomly distributed and did not appear to follow any particular trend. It would seem that as the tide recedes, resuspended benthic diatoms and large Coscinodiscus sp. cells become concentrated in the shallow water. However, the virtual absence of Coscinodiscus sp. from the leading edge of the flooding tide suggests that most of the resuspended cells do not settle to the seabed, but are washed away into the channels. The small peak of benthic diatoms at the leading edge of the flood tide is most likely resuspended locally from the sediment, along with large numbers of diatom frustules.  相似文献   

14.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

15.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

16.
Light attenuation (Kd) of photosynthetically active radiation (PAR) by chromophoric dissolved organic matter (CDOM), total suspended solids (TSS) and chlorophyll a (Chl a) were measured at nine stations along an estuarine gradient in the Swan River, Western Australia, over 15 months. There were strong spatial gradients associated with the marine-freshwater transition along the 32 km of estuary sampled, as well as seasonal gradients mainly associated with rainfall, 80% of which occurs between May and September. CDOM absorbances at 440 nm reached a maximum of 10.9 m−1 with the freshwater inflow but concentrations of suspended matter remained low throughout the sampling period (1.0–21.0 mg l−1) under the diurnal tides of the estuary. CDOM was the dominant constituent of Kd and a stepwise multiple regression showed that 66% (p < 0.0001) of the variation in Kd can be explained by CDOM and an additional 8% (p < 0.0001) by TSS. As a consequence of this result, analysis into the influence of river discharge rates on CDOM absorbance levels was examined for 2002 using data collected during this study, and for 2000 and 2001 using historical dissolved organic carbon (DOC) and river discharge data. The outcome of this analysis infers that greater river discharge rates result in increased CDOM absorbances in the Swan River estuary.  相似文献   

17.
A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1–5 μmol of carbon and has an associated blank of 0.1–0.2 μmol of carbon.Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3.. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The δ13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC.The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average δ13C = −12.4.). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and δ13C of pore-water DOC was nearly 8. lighter at 1.5–2.0-cm depth than in the mat surface layer (0–0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and δ13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters, should be a useful probe of biogeochemical processes in recent environments.  相似文献   

18.
Chromium(VI) concentrations ranging between 3.0 and 6.1 nmol l−1 and 3.1 and 7.3 nmol l−1 were found in the Arctic and Atlantic Oceans, respectively. The vertical profiles show modest depletion of chromium(VI) in surface waters, but poor overall correlations between Cr(VI) and nutrient profiles. Given that Cr(VI) is the dominant oxidation state of chromium in open-ocean waters, these data are combined with literature data to reassess the distribution of Cr in oceanic waters. It is concluded that while Cr shows some characteristics of both “recycled” and “accumulated” vertical profiles, it does not fall clearly within either group.  相似文献   

19.
Exopolymeric substances (EPS) produced by microorganisms play important roles in various aquatic, porous, and extreme environments. Only recently has their occurrence in sea ice been considered. We used macroscopic and microscopic approaches to study the content and possible ecological role of EPS in wintertime fast ice near Barrow, Alaska (71°20′ N, 156°40′ W). Using Alcian blue staining of melted ice samples, we observed high concentrations of EPS in all samples examined, ranging from 0.79 to 7.71 mg xanthan gum equivalents (XGEQV) l−1. Areal conversions to carbon equivalents yielded 1.5−1.9 g C m−2 ice in March and 3.3−4.0 g C m−2 in May (when the ice was thicker). Although EPS did not correlate with macronutrient or pigment data, the latter analyses indicated ongoing or recent biological activity in the ice within temperature horizons of −11°C to −9°C and warmer. EPS correlated positively with bacterial abundance (although no functional relationship could be deduced) and with dissolved organic carbon (DOC) concentrations. Ratios of EPS/DOC decreased at colder temperatures within the core, arguing against physical conversion of DOC to EPS during freezing. When sea-ice segments were maintained at representative winter temperatures (−5°C,−15°C and −25°C) for 3−14 months, the total EPS content increased significantly at rates of 5−47 μg XGEQV l−1 d−1, similar to published rates of EPS production by diatoms. Microscopic images of ice-core sections at these very cold temperatures, using a recently developed non-invasive method, revealed diatoms sequestered in spacious brine pockets, intact autofluorescent chloroplasts in 47% of the (pennate) diatoms observed, and indications of mucus in diatom-containing pores. The high concentrations of EPS detected in these winter ice cores represent a previously unrecognized form of organic matter that may contribute significantly to polar ocean carbon cycles, not only within the ice but after springtime release into the water column. The EPS present in very high concentrations in the brine of these microhabitats appear to play important buffering and cryoprotectant roles for microorganisms, especially diatoms, against harsh winter conditions of high salinity and potential ice-crystal damage.  相似文献   

20.
An ion exchange technique has been used to determine the copper complexing capacity (CuCC) of strong organic complexing agents at 21 stations across the continental shelf of the southeastern United States and in the western Sargasso Sea. The concentration of dissolved organic carbon (DOC) and total particulate materal (TPM), two pools of potential complexing agents, was also measured at each station. The CuCC ranged from 0.014 to 1.681 μM Cu dm−3 on the inner shelf, from 0.043 to 0.095 μM Cu dm−3 in mid and outer shelf waters, and from < 0.010 to 0.036 μM Cu dm−3 at the Sargasso Sea stations. The correlation between CuCC and both DOC and TPM is highly significant (α < 0.01). Two synoptic surveys of the distribution of DOC and TPM across the shelf showed that DOC ranges from > 3 mg C dm−3 nearshore to <1 mg C dm−3 offshore and that TPM ranges from > 50 mg dm−3 nearshore to <1 mg dm−3 offshore. Both TPM and DOC are most variable on the inner shelf. These data are consistent with CuCC data which indicate that the CuCC of inner shelf waters was relatively high and very heterogeneous. In contrast, DOC, TPM and copper complexing capacity are low and nearly invariant at the Sargasso Sea stations. We present a model of the distribution of complexing agents in different marine environments and hypothesize that the mechanisms underlying differences between environments relate to differences in the source(s) and nature of complexing agents in each system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号