首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

2.
Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ13C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ18O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18O-depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post-oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.  相似文献   

3.
In the North Atlantic DSDP/IPOD cores, carbon isotope data on the bulk carbonates show significant fluctuations. In sediments now exposed on land coeval fluctuations in the carbon isotope concentrations are also recorded in pelagic and epeiric facies. For instance, in the Upper Cretaceous chalks of the Paris Basin, there is a major break at the Cenomanian-Turonian boundary. At this time, the manganese content of the chalks was also at a maximum and consequently a positive relation can be demonstrated between δ13C and manganese concentrations. The same positive correlation is also recorded in many pelagic limestones.In the North Atlantic cores, carbon isotope events are related to the black shale facies and to global oceanic anoxic events and one can suppose that in sediments deposited on the continental margins they are also related to mildly anoxic conditions. Considering the manganese geochemistry in carbonate rocks, a high manganese content in such a reducing environment can be found in the sediments only if the Mn concentration of the interstitial solutions are abnormally high. As a high Mn content in marine pore waters is believed to originate from hydrothermal process, Mn and δ13C positive excursions are ultimately related to mid-oceanic ridge activity and to a closely connected phenomenon, the great transgressive pulses during which mid-depth waters may have been anoxic. Consequently, major Mn and carbon isotope events would seem to be useful tools in paleooceanographic reconstructions.  相似文献   

4.
The Tepearasi Formation of the autochthonous Geyikdagi Group in the Central Tauride Belt, SE of Beysehir, is Dogger in age and consists dominantly of massive limestones and greyish dolomites occurring within the middle to upper sections. The total thickness of the dolomitic levels ranges from 100-300 m and laterally extends 500-700 m. Three types of dolomite were distinguished through petrographic analyses: homogeneous, mottled (saddle-crystalline) and joint-filling dolomite, which were interpreted to have formed in two different stages, early diagenetic and late diagenetic. The homogeneous dolomite of the early diagenetic stage is light-coloured and monotonous-textured and shows the form of a dolosparite mosaic. The mottled dolomite formed in the late diagenetic stage is light- to dark-coloured and coarsely granular idiomorphic. The other type of late diagenetic dolomite, described as the joint-filling type, presents a crystal growth pattern from the joint walls towards the centre of the joint space. I  相似文献   

5.
The occurrence of early diagenetic Ca‐rhodochrosite [(Mn,Ca)CO3] is reported in association with ‘griotte’‐type nodular limestones from basinal settings in the geological record; however, without the comparison of analogous modern examples, the controls on precipitation remain speculative. Here the findings of four layers of primary Ca‐rich rhodochrosite recovered from a modern deep‐sea setting in the Eastern Equatorial Pacific, from bioturbated sediments 300 m below sea floor, are reported (Ocean Drilling Program, Leg 201, Site 1226). The mineralogy is similar to cements in burrows recovered during Deep Sea Drilling Project Leg 68 at Eastern Equatorial Pacific Site 503 and from Ca‐rhodochrosite laminae in sediments of the central Baltic Sea. Petrographic relationships and constant oxygen isotopic compositions in the Ca‐rhodochrosite around 5‰ at all depths indicate a shallow burial depth of formation. The onset of 1‰ heavier oxygen isotope composition of Ca‐rhodochrosite at Site 503, about 30 m below the Pliocene/Pleistocene boundary, further suggests that precipitation occurs in the range of 30 m below sea floor. The approximate depth of formation allowed an approximate empirical fractionation factor for marine Ca‐rhodochrosite to be constrained that strongly differs from previously published theoretical values. Based on the approximate precipitation depth, authigenic Ca‐rhodochrosite forms within the SO42?‐reduction zone. Moderately negative δ13C values (around ?3‰) and total organic carbon lower than 2 wt% indicate a relatively low contribution of CO32? from organic C mineralization within the expanded redox zonation in the Eastern Equatorial Pacific. It is suggested that the alkalinity is increased by a rise in pH at focused sites of Mn‐reduction coupled with S2? oxidation. High concentrations of Mn‐oxide can accumulate in layers or burrows because of Mn‐cycling in suboxic sediments as suggested for the Baltic Sea Ca‐rhodochrosites. This study demonstrates how early diagenetic precipitates document biogeochemical processes from past diagenetic systems.  相似文献   

6.
In order to understand the post-depositional history of carbonate rocks of Guri Member (Lower to Middle Miocene), three stratigraphic sections were selected in north Bandar-Abbas in southeast of Iran. Sampling was carried out, analyzed for selective parameters such as oxygen and carbon isotopic compositions (δ18O and δ13C) and interpreted in the present study. We recognized several diagenetic processes including micritization, cementation, neomorphism, compaction, dissolution, silicification, dolomitization, fracturing and vein filling. Some of the diagenetic processes occurred at different conditions, so in order to achieve precise interpretation, samples from different carbonate components such as, micrite, fracture cement, solution pore cement, intergranular cement, and some biotic allochems were analyzed. In this study micrite samples were subdivided into two groups including micro-spary and micrite. They were recognized under Cathodoluminescence microscope. In addition, micrite samples were classified into five groups based on their depositional environments: supratidal, lagoon, coral bar, open sea, and open basin. There were minor changes in stable isotope ratios based on the sedimentary environments, stratigraphy successions, and micro-spary or micrite properties. In this study, similar calcite cements in petrography studies were differentiated by stable isotope data. Those calcite cements have formed in different diagenetic environments such as meteoric and burial cements. Paragenetic sequence of carbonate rocks were interpreted by integration of petrographic and isotopic studies. We have reconstructed diagenetic models of Guri Member into four stages including marine, meteoric, burial, and uplifting.  相似文献   

7.
Three successive Mesozoic neptunian dyke generations and related unconformities suggest recurrent extensional fracturing and periods of relative sea-level rise along the NW Trento Plateau margin in the Southern Alps, Italy. The first neptunian dyke generation was induced by NNW–SSE directed extension of Early Jurassic skeletal oolitic periplatform deposits generating micritic early Middle Liassic neptunian dykes with orthogonal orientation. The second generation of neptunian dykes was possibly caused by marginal extension at the drowned platform edge penetrating Late Jurassic, red pelagic limestones with a pelagic matrix of Albian/Cenomanian age and nearly orthogonal fracture orientation. The third generation of neptunian dykes occurred after a prolonged period of submarine exposure and erosion (Aptian/Albian to Late Maastrichtian) during the rapid burial of the submarine Trento Plateau margin relief. The Late Maastrichtian neptunian dykes were caused by extension of Early to Middle Jurassic oolitic periplatform limestones along steep (inclination > 10°) submarine slopes. Generally successive neptunian dyke generations along drowned carbonate platform margins could be caused by repeated extensional brittle fracturing of lithified periplatform deposits and the filling of micritic matrix derived from overlying pelagic sediment sequences under substantial hydrostatic pressure. This would suggest that recurrent extensional fracturing is continuously recorded by neptunian dyke formation which could be used to indicate extensional tectonic activity at a foundering deep-marine carbonate platform edge.  相似文献   

8.
Isotope signatures associated with early meteoric diagenesis   总被引:12,自引:0,他引:12  
The environments in which carbonate diagenesis proceeds have been documented in previous studies of Holocene and late Pleistocene sediments and limestones on Barbados, West Indies. Variations in the carbon and oxygen isotopic composition of limestones, produced during early freshwater diagenesis, have been observed in this study to occur in specific patterns. Six potentially useful patterns emerge when one views stable isotope data within a stratigraphic framework: (1) the subaerial exposure surface is characterized by strongly 12C-enriched limestones. δ13C compositions of underlying limestones grow progressively heavier with increasing depth; (2) the subaerial exposure surface may also be marked by slight 18O-enrichment; (3) an abrupt shift in δ18O values may differentiate sediments above the exposure surface from those below; (4) sediments altered in the marine-meteoric mixing zone may be characterized by positive covariance between their δ18O and δ13C compositions; (5) the vadose-phreatic boundary may be marked by a sharp increase in δ13C values in the seaward portions of a fresh groundwater system; and (6) samples contemporaneously altered in a single fresh groundwater system within an areally restricted region should display a narrow range of δ18O and a wide range of δ13C compositions. Analysis of samples from five Palaeozoic and Mesozoic formations, which contained petrographic evidence of early freshwater diagenesis, showed that isotope patterns similar to those observed in Barbados limestones have been preserved in rocks as old as Mississippian. These isotope patterns could prove to be useful for identifying diagenetically induced porosity trends in carbonate rocks. They might be used to identify limestones diagenetically altered in meteoric environments, to identify mixing zone cements and dolomites, and to trace the regional and vertical distributions of early meteoric groundwater systems in ancient carbonate formations.  相似文献   

9.
Combined petrographic and geochemical data document several kinds of detrital carbonate in subsurface Miocene-Oligocene mudstones of the Texas Gulf Coast. In the extreme south of Texas, in muddy sediments deposited by ancient precursors to the modern Rio Grande, mudstone carbonate is dominated by extrabasinal detritus derived from Cretaceous limestones of the Edwards plateau. Further north, Oligocene mudstones contain carbonate that is mostly syndepositional skeletal material. Minor amounts of authigenic carbonate are found as replacements of silt sized feldspars in all the mudstones. Depth-related shifts in δ18Ocalcite and δ13Ocalcite suggest that small amounts of authigenic carbonate also form by replacement of detrital carbonate (‘recrystallization’), although this cannot be demonstrated petrographically. Pervasive carbonate cementation in primary pores in mudstones is not generally observed. Textural evidence of carbonate loss through pressure dissolution is widespread, providing a mechanism for the depth-related decline in carbonate content observed in many Gulf Coast wells. Carbonate dissolution in mudstones, and export of the CaCO3, implies a massive acid source, probably resulting from silicate reactions within the mudstones during burial diagenesis.  相似文献   

10.
The Darlington (Sakmarian) and Berriedale (Artinskian) Limestones are neritic deposits that accumulated in high‐latitude environments along the south‐eastern margin of Pangea in what is now Tasmania. These rocks underwent a series of diagenetic processes that began in the marine palaeoenvironment, continued during rapid burial and were profoundly modified by alteration associated with the intrusion of Mesozoic igneous rocks. Marine diagenesis was important but contradictory; although dissolution took place, there was also coeval precipitation of fibrous calcite cement, phosphate and glauconite, as well as calcitization of aragonite shells. These processes are interpreted as having been promoted by mixing of shelf and upwelling deep ocean waters and enabled by microbial degradation of organic matter. In contrast to warm‐water carbonates where meteoric diagenesis is important, the Darlington and Berriedale Limestones were largely unaffected by meteoric diagenesis. Only minor dissolution and local cementation took place in this diagenetic environment, although mechanical compaction was ubiquitous. Correlation with burial history curves indicates that chemical compaction became important as burial depths exceeded 150 m, promoting precipitation of extensive ferroan calcite. This effect resulted from burial by rapidly deposited, overlying, thick, late Permian and Triassic terrestrial sediments. This diagenetic pathway was, however, complicated by the subsequent intrusion of massive Mesozoic diabases and associated silicifying diagenetic fluids. Finally, fractures most probably connected with Cretaceous uplift were filled with late‐stage non‐ferroan calcite cement. This study suggests that both carbonate dissolution and precipitation occur in high‐latitude marine palaeoenvironments and, therefore, the cold‐water diagenetic realm is not always destructive in terms of diagenesis. Furthermore, it appears that for the early Permian of southern Pangea at least, there was no real difference in the diagenetic pathways taken by cool‐water and cold‐water carbonates.  相似文献   

11.
Several processes can contribute to the formation of hemipelagic limestone–marl alternations as a consequence of astronomically driven climate change. The aim of this study was to decipher which environmental factors governed the formation of three Eocene hemipelagic successions of the Basque–Cantabrian Basin using a comprehensive set of physical and bulk carbonate geochemical data (bed thickness, mineralogy, %CaCO3, δ13C and δ18O). The results show that the significance of several environmental processes varied depending on the palaeogeographic setting and eccentricity‐modulated precessional seasonality. In the Sopelana starved deep‐sea basin, limestones were formed as a consequence of high pelagic carbonate productivity during periods of warm seawater and sluggish circulation, which corresponded with periods of low seasonality (summers at aphelion); conversely, marls accumulated when pelagic carbonate productivity decreased during periods with cooler waters and more vigorous circulation, which occurred when seasonality was higher (summers at perihelion). In the Gorrondatxe submarine fan fringe, marls accumulated when high seasonality produced significant continental rainfall and run‐off, causing the dilution of pelagic carbonate sedimentation with terrigenous supplies. In the Oyambre upper slope, marls also accumulated when seasonality was high, as pelagic carbonate productivity decreased due to both the expansion of low‐salinity waters on the ocean surface and the increase in continentally derived nutrients, which caused detrimental seawater conditions for calcareous plankton. Both in Gorrondatxe and Oyambre, limestones accumulated when boreal summer at aphelion caused low seasonality, which allowed relatively stable conditions to prevail. At minimum eccentricity, when precession‐driven seasonality contrast diminished, changes in pelagic carbonate productivity were significant in the three sections. On the contrary, at maximum eccentricity, when seasonality peaked due to summers occurring at perihelion, the effects of other environmental processes, such as continental and oceanic currents, became influential. However, the influence of these processes minimized when summertime coincided with aphelion at maximum eccentricity and seasonality was weakest.  相似文献   

12.
The Shishugou Group, which consists of Middle Jurassic Toutunhe Formation and Upper Jurassic Qigu Formation, is currently an important hydrocarbon exploration target in the Fukang Sag of Junggar Basin, China. The Shishugou Group sandstones experienced a complex diagenetic history with deep burial (3600–5800 m) to develop low–ultralow porosity and permeability reservoir with some high-quality reservoirs found in the tight sandstones owing to the reservoir heterogeneity. This integrated petrographic and geochemical study aims to unravel the origin and alteration of calcite cement in the Shishugou Group sandstones and predict fluid–rock interaction and porosity evolution. The Shishugou Group sandstones (Q43.8F7.4R48.8) have a dominant calcite cement with strong heterogeneity forming in two generations: poikilotopic, pore-filling masses that formed at an early diagenetic stage and isolated rhombs or partial grain replacements that formed at a late stage. The Shishugou Group, which are lacustrine sediments formed in low–medium salinity lake water in a semiarid–arid climatic environment, provided the alkaline diagenetic environment needed for precipitation of chlorite and early calcite cements in early diagenesis. The Ca2+ of the pore-filling calcite cements was sourced from weathering or dissolution of volcanic clasts in the sediment source or during transport in under oxidising conditions. The δ18OV-PDB and δ13CV-PDB values of calcite were significantly controlled by distance from the top unconformity and underlying coal-bearing stratum with carbon sourced from atmospheric CO2, and organic matter. The early carbonate cement inhibited burial compaction producing intergranular pore spaces with enhanced reservoir properties by late dissolution under acidic conditions. Anhydrite cement reflects reaction of organic acid and hydrocarbon with the sandstones and is associated with fluid migration pathways. The fluid–rock interactions and porosity evolution of the tight deep sandstones produced secondary pores that filled with hydrocarbon charge that forms this deep high-quality reservoir.  相似文献   

13.
Abstract A detailed carbon isotope study has been carried out on a Santonian (Upper Cretaceous) carbonate platform succession that crops out at Monte Sant'Erasmo (southern Italy). Previous centimetre‐scale studies on this succession have shown that high‐frequency eustatic changes, resulting from the Earth's orbital fluctuations, controlled the hierarchical organization of the depositional and early diagenetic features in elementary cycles, bundles (groups of three to five elementary cycles) and superbundles (groups of three or four bundles). The elementary cycles, which correspond to single beds, suggest a control caused by Earth's precession; the bundles and superbundles record the short (≈ 100 kyr) and long (≈ 400 kyr) eccentricity periodicity respectively. The δ13C signal of the Monte Sant'Erasmo succession is cyclic in nature and may be considered to be a reliable proxy for the sedimentary evolution (and related sea‐level history) of the analysed sequence. The carbon isotope cyclicity is recorded at bundle and superbundle level, but it is not evident at the scale of the elementary cycles, at least with the sampling interval used in this study. Spectral analysis of the δ13C record shows two main peaks corresponding to the short‐ and long‐eccentricity periodicity, whereas the precession signal is not evident in the power spectrum. In addition, lithofacies analysis shows that, in each bundle (and superbundle), higher C isotope values occur in sediments characterized by marine cements, whereas lower values are normally found in more restricted deposits overprinted by early meteoric diagenesis. Early diagenesis, driven by periodic sea‐level fluctuations, developed in either shallow‐subtidal (marine diagenesis) or subaerial‐exposed (meteoric overprint) sedimentary environments and directly influenced the carbon isotope signature. As a consequence, the δ13C record at Monte Sant'Erasmo reflects high‐frequency climatic oscillations controlling both environmental and early diagenetic changes. The long‐term isotopic record is similar to that of contemporaneous pelagic sections in England and elsewhere in Italy. It is concluded that the δ13C signature of shallow‐water carbonates, such as those of Monte Sant'Erasmo, offers great potential for correlation with coeval sections, including those of the pelagic realm.  相似文献   

14.
The upper Jurassic carbonate settings in Iran are widely exposed in north and northeastern parts. Five stratigraphic columns were selected in the north eastern Iran. Their thickness ranges from 330 to 500 m. The various diagenetic processes identified include, micritization, cementation, compaction (physical and chemical), dissolution, neomorphism, pyritization, hematitization, silicification and dolomitization, which affected these carbonates. Elemental and stable isotopes analysis indicated that these deposits have undergone both meteoric and burial diagenesis in a relatively open system with moderate water-rock interaction. The positive trend between trace elements and oxygen isotope depletion also support these burial conditions. Lighter δl8O values of the dolomite samples may be related to an increase in temperature during the burial, which correspond to coarser euhedral crystals. Relatively higher δ18O values in finer dolomite crystals indicate their formation at lower burial depths relative to coarser crystals. Petrographic evidences such as coarse euhedral crystals with bright and dull zonation prove this interpretation. Chert nodules also have lighter 18O values relative to carbonate host rock, thus indicating the influence of burial diagenetic processes in their formation. The average environmental palaeotemperature was estimated to be 26°C on the basis of oxygen isotope values of less altered lime-mudstones.  相似文献   

15.
Dolomites occur extensively in Cambrian to Lower Ordovician carbonates in the Tienshan orogen of the Quruqtagh area, north‐east Tarim Basin, where thick (up to 1 km), dark grey lenticular limestones of semi‐pelagic to pelagic origin are prominent. The dolomites generally occur as beige, anastomosed geobodies that cross‐cut well‐stratified limestones. Based on detailed field investigations and petrographic examination, three types of matrix dolomite are identified: fine crystalline planar‐e (Md1), fine to medium crystalline planar‐s (e) (Md2) and fine to coarse crystalline non‐planar‐a (Md3) dolomites. One type of cement dolomite, the non‐planar saddle dolomite (Cd), is also common. The preferential occurrence of Md1 along low‐amplitude stylolites points to a causal link to pressure dissolution by which minor Mg ions were probably released for replacive dolomitization during shallow burial compaction. Type Md2, Md3 and Cd dolomites, commonly co‐occurring within the fractured zones, have large overlaps in isotopic composition with that of host limestone, implying that dolomitizing fluids inherited their composition from remnant pore fluids or were buffered by the formation water of host limestones through water–rock interaction. However, the lower δ18O and higher 87Sr/86Sr ratios of these dolomites also suggest more intense fluid–rock interaction at elevated temperature and inputs of Mg and radiogenic Sr from the host limestones with more argillaceous matter and possibly underlying Neoproterozoic siliciclastic strata. Secondary tensional faults and fractures within a compressional tectonic regime were probably important conduits through which higher‐temperature Mg‐rich fluids that had been expelled from depth were driven by enhanced tectonic compression and heating during block overthrusting, forming irregular networks of dolomitized bodies enclosed within the host limestones. This scenario probably took place during the Late Hercynian orogeny, as the Tarim block collided with Tienshan island arc system to the north and north‐east. Subsequent downward recharges of meteoric fluids into the dolomitizing aquifer probably terminated dolomitization as a result of final closure of the South Tienshan Ocean (or Palaeo‐Asian Ocean) and significant tectonic uplift of the Tienshan orogen. This study demonstrates the constructive role of notably tensional (or transtensional) faulting/fracturing in channelling fluids upward as a result of intense tectonic compression and heating along overthrust planes on the convergent plate margin; however, a relatively short‐lived, low fluid flux may have limited the dolomitization exclusively within the fractured/faulted limestones in the overthrust sheets.  相似文献   

16.
A field and petrographic study has been made of 34 massive beds in argillaceous limestones of open marine platform facies in the U.K. Lithologies include grainstones, packstones, wackestones and lime mudstones. The rocks are of Silurian, Carboniferous and Jurassic ages. Additional information was obtained from other limestones in the U.K., the U.S.A., Canada and continental Europe. The beds are parts of sequences composed of couplets of strata, fissile limestones alternating with hard limestones. In the fissile limestones the effects of mechanical compaction and pressure-dissolution have been concentrated, whereas in the hard limestones they are minimal or absent. Bedding planes visible in outcrop are diagenetic in origin and lie in the middle parts of the fissile limestones where compaction has been most severe. The features produced by pressure-dissolution are dissolution seams and fitted fabric: there are no stylolites. The original carbonate sediments were bioturbated and any structures produced by flowing water were destroyed. The vertical distribution of the bedding planes bears no relation to primary depositional bedding planes which are rare or absent. It is inferred that the strata which were to become the hard limestones were selectively cemented before mechanical compaction had been completed. Thenceforth, mechanical compaction and then pressure-dissolution were concentrated in the less cemented strata: these became the fissile limestones. Pressure-dissolution acted late in the diagenetic history and provided only an insignificant part, if any, of the carbonate for cementation. It is concluded that the orientation of beds (couplets) is parallel to successive sea floors and that the sediments that eventually became single beds accumulated synchronously. Similar couplets in platform limestones of the Mississippian and Pennsylvanian of the U.S.A. extend over thousands of square kilometres. The signal that controlled the initial selective cementation must have been widespread and synchronous and also syndepositional in its timing but otherwise cannot be further defined on the basis of the data so far collected. The presumed order of events was (1) accumulation of carbonate sediment, terrigenous clay and organic matter, (2) hydrodynamic reworking and bioturbation. the latter finally overprinting the former, (3) selective cementation of the more carbonate-rich strata yielding couplets, each consisting of a relatively well-cemented stratum and a poorly cemented stratum, (4) mechanical compaction concentrated in the less cemented strata, (5) pressure-dissolution concentrated in the same strata.  相似文献   

17.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   

18.
Sedimentological, mineralogical, stable carbon and oxygen isotope determinations and biomarker analyses were performed on siderite concretions occurring in terrestrial silts to understand their formation and to characterize the sedimentary and diagenetic conditions favouring their growth. High δ13C values (6·4‰ on average) indicate that siderite precipitated in an anoxic environment where bacterial methanogenesis operated. The development of anoxic conditions during shallow burial was induced by a change in sedimentary environment from flood plain to swamp, related to a rise of the ground‐water table. Large amounts of decaying plant debris led to efficient oxygen consumption within the pore‐water in the peat. Oxygen depletion, in combination with a decrease in sedimentation rate, promoted anoxic diagenetic conditions under the swamp and favoured abundant siderite precipitation. This shows how a change in sedimentary conditions can have a profound impact on the early‐diagenetic environment and carbonate authigenesis. The concretions contain numerous rhizoliths; they are cemented with calcium‐rhodochrosite, a feature which has not been reported before. The rhodochrosite cement has negative δ13C values (?16·5‰ on average) and precipitated in suboxic conditions due to microbial degradation of roots coupled to manganese reduction. The exceptional preservation of the epidermis/exodermis and xylem vessels of former root tissues indicates that the rhodochrosite formed shortly after the death of a root in water‐logged sediments. Rhodochrosite precipitated during the initial stages of concretionary growth in suboxic microenvironments within roots, while siderite cementation occurred simultaneously around them in anoxic conditions. These suboxic microenvironments developed because oxygen was transported from the overlying oxygenated soil into sediments saturated with anoxic water via roots acting as permeable conduits. This model explains how separate generations of carbonate cements having different mineralogy and isotopic compositions, which would conventionally be regarded as cements precipitated sequentially in different diagenetic zones during gradual burial, can form simultaneously in shallow burial settings where strong redox gradients exist around vertically oriented permeable root structures.  相似文献   

19.
A peculiar facies of the Norian–Rhaetian Dachstein‐type platform carbonates, which contains large amounts of blackened bioclasts and dissolutional cavities filled by cements and internal sediments, occurs in the Zlatibor Mountains, Serbia. Microfacies investigations revealed that the blackened bioclasts are predominantly Solenoporaceae, with a finely crystalline, originally aragonite skeleton of fine cellular structure. Blackening of other bioclasts also occurs subordinately. Solenoporacean‐dominated reefs, developed behind the platform margin patch‐reef tract, were the main source of sand‐sized detritus. The blackened and other non‐blackened bioclasts are incorporated in automicrite cement. Radiaxial fibrous calcite cements in the dissolutional cavities are also black, dark grey or white. Reworked black pebbles were reported from many occurrences of peritidal deposits; in those cases, the blackening took place under pedogenic, meteoric diagenetic conditions. In contrast, in the inner platform deposits of the Ilid?a Limestone, the blackening of bioclasts occurred in a marine–meteoric mixing‐zone, as indicated by petrographic features and geochemical data of the skeleton‐replacing calcite crystals. Attributes of mixing‐zone pore waters were controlled by mixing corrosion, different solubility of carbonate minerals and microbial decomposition of organic matter. In the moderate‐energy inner platform environment, large amounts of microbial organic tissue were accumulated and subsequently decomposed, triggering selective blackening in the course of early, shallow burial diagenesis. The δ18O and δ13C values of the mixing‐zone precipitates and replacive calcite do not produce a linear mixing trend. Variation mainly resulted from microbial decomposition of organic matter that occurred under mixing‐zone conditions. The paragenetic sequence implies cyclic diagenetic conditions that were determined by marine, meteoric and mixing‐zone pore fluids. The diagenetic cycles were controlled by sea‐level fluctuations of moderate amplitude under a semi‐arid to semi‐humid climate.  相似文献   

20.
Nodular chert from the middle and upper Arbuckle Group (Early Ordovician) in the Slick Hills, SW Oklahoma, was formed by selective replacement of grainstones, burrow fillings, algal structures, and evaporite nodules. Chert nodules are dominantly microquartz with minor fibrous quartz (both quartzine and chalcedony), megaquartz, and microflamboyant quartz. Lepisphere textures of an opal-CT precursor are preserved in many (especially in finely-crystalline) chert nodules. The δ18O values of microquartz chert range from +23.4 to + 28.80/00 (SMOW), significantly lower than those of Cenozoic and Mesozoic microquartz chert formed both in the deep sea and from near-surface sea water. The δ18O values of chert decrease with increasing quartz crystal size. Silicification in the Arbuckle Group occurred during early diagenesis, with the timing constrained by the relative temporal relationships among silicification, burial compaction, and early dolomite stabilization. Silica for initial chert nucleation may have been derived from both dissolution of sponge spicules and silica-enriched sea water. Chert nucleation appears to have been controlled by the porosity, permeability, and organic matter content of precursor sediments. This conclusion is based on the fact that chert selectively replaced both porous grainstones and burrows and algal structures enriched in organic matter. Growth of chert probably occurred by a maturation process from opal-A(?), to opal-CT, to quartz, as indicated by the presence of opal-CT precursor textures in many chert nodules. Although field and petrographic evidence argues for an early marine origin for chert in the Arbuckle Group, the light δ18O values are inconsistent with this origin. Meteoric resetting of the δ18O values of the chert during exposure of the carbonate platform best explains the light δ18O values because: (i) the δ18O values of chert nodules decrease with decreasing δ18O values of host limestones, and (ii) chert nodules from early dolomite, which underwent more extensive meteoric modification than associated limestones, have lighter δ18O values than chert nodules from limestones. Increasing recrystallization of chert nodules by meteoric water resulted in progressive 18O depletion and (quartz) crystal enlargement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号