首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用混凝土塑性损伤本构模拟盾构管片,建立三维有限元壳-弹簧模型,开展了在45°断层错动下盾构隧道结构响应的静力弹塑性分析。研究表明,在正断层和逆断层错动下,衬砌受压损伤最大值均分布在拱顶处,衬砌受拉损伤最大值均分布在拱腰处;正断层错动下,环间螺栓易发生受拉破坏;逆断层错动下,混凝土管片易发生拉压损伤破坏。替换断层附近土体为软土的同时提高螺栓强度等级,可有效抵御较大的断层错动位移。研究对断层错动下盾构隧道的抗震措施具有一定参考价值。  相似文献   

2.
Seafloor spreading typically occurs along ridge segments oriented at right angles to plate motion and offset by orthogonal transform faults. Few regions exhibit different patterns, such as the East Pacific Rise (EPR), which additionally displays overlapping spreading centres (OSCs) and microplates. We introduce a dynamical model using two independent, scalar types of damage in an elastic plate that generates most observed spreading geometries as natural failure modes, suggesting that the dynamics of the underlying mantle have only a minor influence on accretionary plate margins. The elastic modulus that is affected by the damage determines the type of localized deformation. Damage reducing the bulk modulus tends to result in tensile fractures, while a reduction in shear modulus leads to shear fractures. The damage source determines the fracture orientation. Material weakening in tension results in fractures perpendicular to the most tensile principal stress, while shear weakening results in two conjugate fractures at 45° relative to the applied stress. Strain or energy-dependent damage results in propagating, localized fractures. Stress-dependent damage tends to evolve into diffuse regions that may eventually focus into narrow zones. Starting from small perturbations with reduced elastic moduli as nucleation points, all ridge geometries start with ridge propagation caused by tensile energy reducing both elastic moduli by a model of damage caused by tensile energy reducing both moduli. Orthogonal transform faults develop in regions between offset segments if there is an additional reduction in shear modulus due to shear stress. The orthogonality of the transform faults does not derive from the local stress orientation but from the dynamics of damage focusing which causes the fault to converge towards an optimal geometry that concentrates nearly all deformation into damaged zones. OSCs form when the shear damage leading to transform faults is suppressed, while microplate formation requires additional reduction of the shear modulus by tensile energy. Oblique spreading at 45°, recently discovered along ultraslow spreading ridges, occurs when both moduli are weakened by shear energy. A parameter regime exists in which ridge-transform patterns develop at low applied tension, while microplates form at higher stresses. These results indicate that at least three different micromechanical processes operate with different evolution rates. OSCs and oblique spreading require different material properties.  相似文献   

3.
厚型钢结构防火涂层因其耐火性好、性能稳定而成为最常用的防火保护形式之一,但厚型防火涂层易在地震和冲击等作用下发生破损和脱落,这将影响钢结构的抗火性能。为了认识厚型钢结构防火涂层的破损模式,本文对涂有厚型防火涂料的钢板件进行了纯弯荷载试验,运用有限元分析软件AN SY S对试验全过程进行了模拟分析,并与试验结果相对比。结果表明:受弯构件压区涂层的破损模式主要为涂层-钢板界面破损,拉区涂层的破损模式与涂层厚度有关,当涂层厚度较薄时,主要为涂层内部拉裂,涂层厚度较厚时,主要为涂层-钢板界面破损;涂层厚度越厚,界面破损出现得越早;若在涂层上贴置应变片,会使涂层的界面裂缝和横向裂缝提早出现。  相似文献   

4.
The effect of quasi-stationary electromagnetic pulses on rock samples under a uniaxial compressive load is studied. The time dependences of acoustic emission (AE) activity and accumulation of AE events are constructed and analyzed in a wide range of principal compressive stresses. The qualitative and quantitative comparison of AE responses to an external action under various compressive loads is performed. The range of principal stresses (well below the failure level) is established in which the action of electric pulses on the AE regime is fairly effective.  相似文献   

5.
介绍了2个相同尺寸混凝土扩展基础分别在上拔、上拔与水平力组合荷载作用下的室内足尺试验概况,并根据加载过程中的基顶荷载位移、基础主柱纵筋应变、扩大端钢筋和混凝土应变等试验数据,分析了2种荷载工况下混凝土扩展基础的承载变形特性及混凝土裂缝发展规律。结果表明:①上拔和水平力组合荷载作用下,基础上拔荷载位移曲线呈现出两阶段特性,而水平位移曲线随水平力增加近似呈线性增加,水平荷载降低了扩展基础的抗拔承载性能;②上拔和水平力组合荷载作用下,基础主柱横截面部分受拉、部分承压,在基础立柱与底板连接处的拉应力最大,混凝土裂缝未贯穿全截面,而在上拔荷载作用下,混凝土扩展基础主柱全断面受拉,裂缝贯穿全断面。  相似文献   

6.
邱兆文  喻烟  杜义  周正华 《地震学报》2021,43(2):237-244
由于断层错动导致的围岩永久变形会对隧道结构产生危害,为研究隧道在逆断层错动下的变形与受力特征,本文以成兰铁路穿越北川—映秀断裂的跃龙门隧道工程为研究对象,利用Abaqus软件建立穿越逆断层隧道结构的数值模型,选择参数和设定边界条件,模拟分析在逆断层错动作用下隧道衬砌结构的受力与变形情况.结果表明:逆断层错动引起隧道衬砌...  相似文献   

7.
There are several alternatives to evaluate seismic damage‐cracking behavior of concrete arch dams, among which damage theory is the most popular. A more recent option introduced for this purpose is plastic–damage (PD) approach. In this study, a special finite element program coded in 3‐D space is developed on the basis of a well‐established PD model successfully applied to gravity dams in 2‐D plane stress state. The model originally proposed by Lee and Fenves in 1998 relies on isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity to capture inelastic behaviors of concrete in cyclic or dynamic loadings. The present implementation is based on the rate‐dependent version of the model, including large crack opening/closing possibilities. Moreover, with utilizing the Hilber–Hughes–Taylor time integration scheme, an incremental–iterative solution strategy is detailed for the coupled dam–reservoir equations while the damage–dependent damping stress is included. The program is initially validated, and then, it is employed for the main analyses of the Koyna gravity dam in a 3‐D modeling as well as a typical concrete arch dam. The former is a major verification for the further examination on the arch dam. The application of the PD model to an arch dam is more challenging because the governing stress condition is multiaxial, causing shear damage to become more important than uniaxial states dominated in gravity dams. In fact, the softening and strength loss in compression for the damaged regions under multiaxial cyclic loadings affect its seismic safety. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The distribution and time evolution of overlithostatic horizontal stresses in the vertical cross-sections of the model of a solid continent are studied in terms of a 2D numerical model. The continent is moving self-consistently with time-varying mantle flows. Over a period of 50 Ma, the continent, which had been initially located at a distance of about 1500 km from the downward mantle flow (subduction zone), first overlays the region of the marginal sea, then thrusts over the zone of subduction, thus making it inclined and deforming it. It is found that the horizontal tensile stresses observed at the initial stages are succeeded by compressive stresses, especially at the leading edge (up to 40 MPa). This is caused by the change of the dragging action of the subduction zone into the retarding action during the continent crossing over this zone. The dependence of the calculated stresses on the Rayleigh number and on the thickness of the model of the continent is estimated. It is obtained also that the distribution of horizontal stresses along the strike of the continent is rather distinctly indicative of the locations of upward and downward flows in the subcontinental mantle. With the considered values of the model parameters, the tensile stresses in the near-to central regions of the continent may be twice to thrice the tensile stresses at its margins. Hence, in the simplest case of a homogeneous continent, its division will occur in the zone directly above the upward subcontinental flow. Detachment from the continent of the fragments of its edge adjacent to the marginal sea implies that the thickness of the continental plate in that part and/or its strength is considerably lower than in the center of the continent.  相似文献   

9.
Rifting dynamics at spreading axes is governed by two processes: the large-scale plate divergence and the local magma accumulation in the crust-mantle transition layer. Both evolve simultaneously. A model is developed particularly for the situation in Iceland where a well studied rifting episode occurred in the Krafla volcanic system 1975–1984. Both the divergence and the buoyant rise of magma create tensile deviatoric stress in the axial region, but while divergence generates an altogether extensional stress field, uprising of buoyant melt produces tension only near the axis but compression of the sides. The buoyant rise is driven by the differential pressure gradient in rock and melt. The processes are studied with a two-dimensional finite-element routine. Presently thermal effects are neglected. The model parameters are density difference, size of the buoyant body, externally applied stress field, mechanical properties of rock and melt. Relatively small amounts of divergence and small increases of buoyancy are shown to generate axial tension which can overcome the tensile strength. Axial tension produced by buoyant bodies can even overcome lateral compression. Observed long intervals of quiescence require either large rock strength, quasi-continuous stress relaxation, small buoyant bodies, and/or a compressive deviatoric stress normal to the axis during much of the time between rifting episodes. Buoyant rise and injection of melt must be important in generating compression.  相似文献   

10.
The Bridgman ring experiment, in which a hard rubber ring slipped over a steel rod was observed to split when subjected to a hydrostatic confining pressure, was repeated with Pyrex glass rings. Three cases were studied, in which (a) both ring and rod were unjacketed, (b) the inner wall of the ring was sealed from the pressure medium and (c) both rod and ring were completely jacketed. In the first two cases the ring was observed to split abruptly, with a single axial crack when confining pressure reached a critical level. In the third case no abrupt failure occurred, but a number of axial cracks were found to have formed, grown stably, but not penetrated the outer wall of the ring. The first two cases are explained by hydraulic fracturing of the ring. Observations and analysis indicate that in the third case the cracks started at flaws on the inner surface of the ring and propagated outwards in a stable manner. This case, in which a tensile crack propagates in an all-around compressive stress field, provides some insight into axial cracking of rock in triaxial compression and tensile failure of rock under radial shock loading.  相似文献   

11.
地幔对流对全球岩石圈应力产生与分布的作用   总被引:16,自引:4,他引:12       下载免费PDF全文
利用动力学模拟方法研究地幔对流对于大尺度岩石圈内部应力场形成的作用. 地幔物质内部的密度横向非均匀及表面板块运动引起地幔流动,并在岩石圈底部产生一个应力场. 该应力场作为面力将造成岩石圈本身变形,从而产生岩石圈内部的应力分布. 模拟计算结果表明,大部分俯冲带及大陆碰撞带区域应力均呈现挤压特征,如环太平洋俯冲带及印度-欧亚碰撞带等;而东太平洋洋脊、大西洋洋脊及东非裂谷处应力状态均表现为拉张;并且绝大多数热点位置处于应力拉张区域,这与目前对全球构造应力状态的理解是一致的. 计算的岩石圈内部最大水平主压应力的方向与观测表现出相当的一致,其结果总体上吻合得较好,然而在局部区域(例如西北太平洋的俯冲带、青藏高原等地区)存在着较大的差异. 研究表明,地幔对流是造成岩石圈内部大尺度应力状态及分布的一个重要因素.  相似文献   

12.
IntroductionYunnanProvinceislocatedinthesouthofNorth-SouthseismiczoneinChina.ItisoneofthehighseismicactiveregionsinChinesemainland.Morethanonehundredstrongearthquakeswithmagnitude6ormoreoccurredinthisregioninhistory.AsanimportantsoutheasternmarginofTibetanPlateau,YunnanregionisahotspotinstudyonthedynamicsofTibetanPlateau.Theactionsofcompressivestressinnorth-southorientationandgravitationalpotentialcausedlateralextrusionofmaterialintheplateauwiththeupliftingofTibetanPlateau.Severalblocksa…  相似文献   

13.
This paper studies the response of pipelines to vibrations induced by the operation of a pavement breaker during the rehabilitation of concrete pavements. An efficient two-and-a-half-dimensional (2.5D) formulation is employed, where the geometry of the structure and the soil is assumed to be invariant in the longitudinal direction, allowing for a Fourier transform of the longitudinal coordinate y along the structure to the wavenumber ky. The dynamic soil–structure interaction problem is solved by means of a 2.5D coupled finite element–boundary element (FE–BE) method using a subdomain formulation. The numerical model is verified by means of results available in the literature for a buried pipeline subjected to incident P- and SV-waves with an arbitrary angle of incidence. The presented methodology is capable to incorporate any type of incident wave field induced by earthquakes, construction activities, traffic, explosions or industrial activities. The risk of damage to a high pressure steel natural gas pipeline and a concrete sewer pipe due to the operation of a pavement breaker is assessed by means of the 2.5D coupled FE–BE methodology. It is observed that the stresses in the steel pipeline due to the operation of the pavement breaker are much lower than those induced by the operating internal pressure. The steel pipeline behaves in the linear elastic range under the combined effect of the loadings, indicating that damage to steel pipelines close to the road due to the operation of a pavement breaker is unlikely. The maximum principal stress in the concrete pipe, on the other hand, remains only slightly lower than the specified tensile strength. The decision to use a pavement breaker should hence be taken with care, as its operation may induce tensile stresses in concrete sewer pipes which are of the same order of magnitude as the tensile strength of the concrete. Assessing the risk of damage by means of vibration guidelines based on the peak particle velocity (PPV) gives, for the particular cases considered, qualitatively similar results.  相似文献   

14.
Summary The predetermination of the trajectory of a tensile crack induced at the tip of a stress-free fault plane (open slit, in two dimensional approximation) was investigated. Both the primary field of the tensile component of principal stress and the primary field of the strain energy density factor were computed and compared with the trajectory of the subsequent tensile crack. It was found that it is not the field of the strain energy density factor, but the field of the tensile component of principal stress which determines the trajectory of the tensile crack. Moreover, this field is responsible for the trajectory of the tensile crack not only in its seismoactive phase of its development, but also in the following aseismic stage characterized by slow stable growth.  相似文献   

15.
— A set of experiments on four samples of Oshima Granite at 15, 40 and 60 MPa confining pressure have been performed in order to investigate the damage behavior of granite submitted to deviatoric stress. In addition an experiment on one sample of Toki Granite at 40 MPa confining pressure was performed, in order to compare and elucidate the structural effects. Using acoustic emission data, strain measurements and elastic wave velocities allow to define consistently a damage domain in the stress space. In this domain, microcracking develops. The microcracking process is, in a first stage, homogeneous and, close to failure, localized. Elastic wave velocities decrease in the damage domain and elastic anisotropy develops. Using Kachanov's model (1993), elastic wave velocities have been inverted to derive the full second-order crack density tensor and characterize the fluid saturation state from the fourth-order crack density tensor. Crack density is strongly anisotropic and the total crack density close to failure slightly above one. The results indicate that the rock is saturated in agreement with the experimental conditions. The model is thus shown to be very appropriate to infer from elastic wave velocities a complete quantitative characterization of the damaged rock.  相似文献   

16.
Many theoretical models predict that arrested dykes may generate major grabens at rift-zone surfaces. Arrested dyke tips in eroded rift zones, however, are normally not associated with major grabens or normal faults that could be generated by dyke-induced stresses ahead of the tips, and normal faults and grabens tend to be less common in those parts of eroded rift zones where dykes are comparatively abundant. Similarly, there are feeder dykes, as well as dykes arrested a few metres below the surface, that do not generate faults or grabens at the surface. Here I propose that this discrepancy between theoretical models and field observations may be explained by the mechanical layering of the crust. Numerical models presented here show that abrupt changes in Young's moduli, layers with high dyke-normal compressive stresses (stress barriers), and weak, horizontal contacts have large effects on the dyke-induced stress fields. For the models considered, the surface tensile stresses induced by arrested dykes are normally too small to lead to significant fault or graben formation at the rift-zone surface. The only significant dyke-induced surface tensile stresses (2 MPa) in these models are for a dyke tip arrested at 1 km depth below the surface of a rift zone with a weak contact at 400 m depth and subject to extension. That tensile stress, however, peaks above the ends of the weak horizontal contact, which, in the model considered, occur at distances of 4 km to either side of the dyke, and shows no simple relation to the depth to the dyke tip. Thus, for a layered crust with weak contacts, straightforward inversion of surface geodetic data to infer dyke geometries may result in unreliable results.Editorial responsibility: A. Woods  相似文献   

17.
MechanicalanalysisofenechelonstructureanditssignificanceofcontrollingearthquakesXin-ShengXIE(谢新生)andXiao-PingRUAN(阮小平)(Instit...  相似文献   

18.
本文介绍了应用激光全息干涉法观测单轴压缩条件下裂纹附近的离面位移场和岩石的变形破坏过程。着重指出了裂纹构造活动与微裂隙丛集发育的变形局部化前兆在这种破坏过程中的相互关联,并就其所反映的震源物理本质进行了讨论。  相似文献   

19.
20.
基于模态分析和神经网络的裂缝损伤识别   总被引:1,自引:0,他引:1  
提出了裂缝损伤诊断的神经网络方法,探讨了用模态技术和神经网络对混凝土结构裂缝损伤进行识别与定位的方法。文中以一简支矩形截面梁为研究对象,通过完好结构和损伤结构的有限元分析,获取两者的损伤标识量,输入BP神经网络训练。以损伤位置和裂缝高度作为输出参数,对其进行单处损伤定位的研究。数值仿真结果表明,采用神经网络方法可以对裂缝做出较好的诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号