首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

2.
Aerosol and rain samples were collected between 48°N and 55°S during the KH-08-2 and MR08-06 cruises conducted over the North and South Pacific Ocean in 2008 and 2009, to estimate dry and wet deposition fluxes of atmospheric inorganic nitrogen (N). Inorganic N in aerosols was composed of ~68% NH4+ and ~32% NO3 (median values for all data), with ~81% and ~45% of each species being present on fine mode aerosol, respectively. Concentrations of NH4+ and NO3 in rainwater ranged from 1.7–55 μmol L−1 and 0.16–18 μmol L−1, respectively, accounting for ~87% by NH4+ and ~13% by NO3 of total inorganic N (median values for all data). A significant correlation (r = 0.74, p < 0.05, n = 10) between NH4+ and methanesulfonic acid (MSA) was found in rainwater samples collected over the South Pacific, whereas no significant correlations were found between NH4+ and MSA in rainwater collected over the subarctic (r = 0.42, p > 0.1, n = 6) and subtropical (r = 0.33, p > 0.5, n = 6) western North Pacific, suggesting that emissions of ammonia (NH3) by marine biological activity from the ocean could become a significant source of NH4+ over the South Pacific. While NO3 was the dominant inorganic N species in dry deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+ (42–99% of the wet deposition fluxes for total inorganic N). We estimated mean total (dry + wet) deposition fluxes of atmospheric total inorganic N in the Pacific Ocean to be 32–64 μmol m−2 d−1, with 66–99% of this by wet deposition, indicating that wet deposition plays a more important role in the supply of atmospheric inorganic N than dry deposition.  相似文献   

3.
In the present study, the wet and dry depositions of particulate NO3, SO42−, Cl and NH4+ were measured using a wet/dry sampler as a surrogate surface. Gas phase compounds of nitrogen, sulfur and chloride (HNO3, NH3, SO2 and HCl) were measured by an annular denuder system (ADS) equipped with a back up filter for the collection of particles with diameter ≤ 5 μm. Ambient concentrations of NO, NO2 and SO2 were also taken into consideration. Sampling was conducted at an urban site in the center of the city of Thessaloniki, northern Greece. The presence of the aerosol species was examined by cold/warm period and the possible compounds in dry deposits were also considered. Dry deposition fluxes were found to be well correlated with ambient particle concentrations in order to be used for the calculation of particle deposition velocity. Average particulate deposition velocities calculated were 0.36, 0.20, 0.20 and 0.10 cm s− 1 for Cl, NO3, SO42− and NH4+, respectively. Total dry deposition fluxes (gas and particles) were estimated at 3.24 kg ha− 1 year− 1 for chloride (HCl + p-Cl), 9.97 kg ha− 1 year− 1 for nitrogen oxidized (NO + NO2 + HNO3 + p-NO3), 5.32 kg ha− 1 year− 1 for nitrogen reduced (NH3 + p-NH4) and 15.77 kg ha− 1 year− 1 for sulfur (SO2 + p-SO4). 70–90% total dry deposition was due to gaseous species deposition. The contribution of dry deposition to the total (wet + dry) was at the level of 60–70% for sulfur and nitrogen (oxidized and reduced), whereas dry chloride deposition contributed 35% to the total. The dry-to-wet deposition ratio of all the studied species was found to be significantly associated with the precipitation amount, with nitrogen species being better and higher correlated. Wet, dry and total depositions measured in Thessaloniki, were compared with other countries of Europe, US and Asia.  相似文献   

4.
Wet-only, dry-only, bulk deposition and deposition of sedimentary particles and gases deposited after the last rain (DAR) were collected weekly at La Castanya station in the Montseny mountains (NE Spain, 41°46′N, 2°21′E) from February 2009 to July 2010. These samples were analysed for pH, alkalinity, and the concentrations of major ions (Cl?, NO3 ?, SO4 2?, Na+, K+, Ca2+, Mg2+, NH4 +). Significant differences were observed between bulk and wet-only precipitation, with an enrichment of ions associated to coarse particles in bulk deposition. The comparison between wet and dry fluxes revealed that the removal of compounds at Montseny occurred mainly by wet deposition, which accounted for 74 % of total deposition. The dry flux was characterised by the predominance of K+, Ca2+ and Mg2+, which are related to coarse particles. Bulk collection methods at Montseny were considered representative of total atmospheric deposition, since bulk deposition plus DAR accounted for 97 % of total deposition measured with wet and dry-only collection devices. Thus, bulk deposition collectors can be recommended for deposition networks at remote sites (lacking electricity connection) in environments, where coarse particles are a predominant fraction of the aerosol mass.  相似文献   

5.
We assessed the rainwater chemistry, the potential sources of its main inorganic components and bulk atmospheric deposition in a rural tropical semiarid region in the Brazilian Caatinga. Rainfall samples were collected during two wet seasons, one during an extremely dry year (2012) and one during a year with normal rainfall (2013). According to measurements of the main inorganic ions in the rainwater (H+, Na+, NH4 +, K+, Ca2+, Mg2+, Cl?, NO3 ?, and SO4 2?), no differences were observed in the total ionic charge between the two investigated wet seasons. However, Ca2+, K+, NH4 + and NO3 ? were significant higher in the wetter year (p < 0.05) which was attributed to anthropogenic activities, such as organic fertilizer applications. The total ionic contents of the rainwater suggested a dominant marine contribution, accounting for 76 % and 58 % of the rainwater in 2012 and 2013, respectively. The sum of the non-sea-salt fractions of Cl?, SO4 2?, Mg2+, Ca2+ and K+ were 19 % and 33 % in 2012 and 2013, and the nitrogenous compounds accounted for 2.8 % and 6.0 % of the total ionic contents in 2012 and 2013, respectively. The ionic ratios suggested that Mg2+ was probably the main neutralizing constituent of rainwater acidity, followed by Ca2+. We observed a low bulk atmospheric deposition of all major rainwater ions during both wet seasons. Regarding nitrogen deposition, we estimated slightly lower annual inputs than previous global estimates. Our findings contribute to the understanding of rainfall chemistry in northeastern Brazil by providing baseline information for a previously unstudied tropical semiarid ecosystem.  相似文献   

6.
Changes in the frequency of precipitation as a result of a changing climate, as well as anthropogenic induced deposition of nitrogen (N), both have the potential to alter grassland productivity and diversity. Central U.S. weather patterns are dominated by three major air mass trajectories including regional sources from the Gulf of Mexico (marine tropical, Mt), the Pacific Northwest (mild pacific, mP), and the Desert Southwest (continental tropical, Ct). In this work, the Hybrid Single Particle Lagrangian Integrated Trajectory model was used to determine trends in the proportion of precipitation events from these air mass sources from 1983 to 2006 relative to Konza Prairie Biological Station (KPBS), KS. The annual volume-weighted mean (VWM) concentrations and wet deposition of a variety of precipitation dissolved solutes were linked to source regions north or south of KPBS. The proportion of precipitation events from Mt significantly increased, while the proportion of events from Ct and mP decreased significantly over the study period. The annual VWM concentrations of most solutes were typically higher from precipitation sourced to the north of KPBS. However, wet deposition of four ecologically relevant solutes (NH4+, NO3?, H+, and SO4?2) was higher from events from the southern region, likely due to higher precipitation amounts. The proportion of reduced N increased significantly over the study period but was not affected by source region despite the higher use of fertilizers for agriculture in the northern source region. Given the location of this site relative to three dominant air mass paths, future shifts in these patterns will likely impact wet nutrient deposition.  相似文献   

7.
模拟氮沉降对温带阔叶红松林地氮素净矿化量的影响   总被引:2,自引:0,他引:2  
采用埋置PVC管的树脂芯方法原位测定了不同氮形态及其剂量作用下长白山阔叶红松林地0~7 cm和0~15 cm土壤氮素净氨化、净硝化和净矿化量的季节和年际变化规律.近3年的观测结果表明,对照处理不同土层氮素年净矿化量中以净氨化占主导地位,约占净矿化量的53%~72%,高剂量NO3-N的输入使该比例减少至37%~66%,而NH4-N的输入却使该比例增至86%~92%.随着模拟氮沉降量增加,土壤氮素年净矿化量也随之增加,尤其外源NH+4-N输入对净矿化量的促进作用更为明显,但随着施肥年限的延长,这种促进作用逐渐减弱.与林地0~15 cm土壤相比,氮沉降量增加对0~7 cm土壤氮素净氨化和净矿化量的促进作用更为明显,尤其是NH4Cl处理的促进作用更大.通过将实验结果与前人报道的野外原位观测整合,逐步回归分析后发现土壤氮素年净矿化量随着氮素年沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素年净矿化量的贡献率约为38%;大气氮沉降量、森林有机层pH及其碳/氮比值可解释不同区域森林表层土壤氮素年净矿化量一半的变化.研究结果将利于有效预测区域林地氮素净矿化量特征及其对环境变化的响应.  相似文献   

8.
Chemical compositions of precipitation samples collected from a remote and high elevation site (Nam Co Station, 30°46.44??N, 90°59.31??E, 4730?m?a.s.l.) in central Tibetan Plateau (TP, hereafter) from August 2005 to August 2009 are investigated. During the study period, Ca2+ and HCO 3 - have the highest concentrations among ions and are the dominant cation and anion in precipitation, taking 27.46?% and 30.84?% to the total ions respectively. Empirical Orthogonal Functions (EOFs) analyses reveal that crustal aerosol inputs significantly contributed to the loading of Ca2+, Mg2+, SO 4 2- and HCO 3 - in precipitation, while lake salt plays a major source of K+ and Cl-. Seasonal variations of ionic wet deposition fluxes show high values during monsoon seasons due to large precipitation amount. Among the cations, annual Ca2+ flux is the largest (86.26?eq hm?2), Na+ and NH 4 + fluxes are following. Among anions, HCO 3 - has the highest flux (98.66?eq hm?2) while that of NO 3 - is the lowest. Annual wet deposition of nitrogen has varied considerably with the average value of 0.70?kg?ha?1 a?1 at Nam Co Station. About 80?% of total nitrogen flux occurs during the monsoon seasons when precipitation is concentrated, in which NH 4 + and NO 3 - contributed to 61?% and 39?% of the total nitrogen deposition. Thus, our ionic concentrations and wet deposition fluxes in precipitation can provide a useful dataset to assess atmospheric environment and its impacts on ecosystem in the inland TP.  相似文献   

9.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

10.
The chemical compositions (Na+, NH4 +, K+, Mg2+, Ca2+, Cl?, NO2 ?, NO3 ?, SO4 2?, HCO3 ?) of wet precipitation and nitrogen isotope compositions δ15N(NH4 +) were studied from January to December 2010 in Wroc?aw (SW Poland). Results of a principle component analysis show that 82 % of the data variability can be explained by three main factors: 1) F1 (40 %) observed during vegetative season (electrical conductivity, HCO3 ?, NO3 ?, NO2 ?, NH4 + and SO4 2?), mainly controlling rainwater mineralization; 2) F2 (26 %) observed during vegetative and heating seasons (K+, Ca2+ and Mg2+), probably representing a combination of two processes: anthropogenic dusts and fertilizers application in agricultural fields, and 3) F3 (16 %) reported mainly during heating season (Na+ and Cl?) probably indicating the influence of marine aerosols. Variations of δ15N(NH4 +) from ?11.5 to 18.5?‰ identify three main pathways for the formation of NH4 +: 1) equilibrium fractionation between NH3 and NH4 +; 2) kinetic exchange between NH3 and NH4 +; 3) NH4 + exchange between atmospheric salts particles and precipitation. The coupled chemical/statistical analysis and δ15N(NH4 +) approach shows that while fossil fuels burning is the main source of NH4 + in precipitation during the heating season, during the vegetative season NH4 + originates from local sewage irrigation fields in Osobowice or agricultural fertilizers.  相似文献   

11.
From the IGAC-DEBITS Africa network (IDAF), data sets on precipitation chemistry collected from the ‘wet savanna ecosystem’ site of Lamto (Côte d'Ivoire), are analyzed (1995–2002). Inorganic (Ca2 +, Mg2 +, Na+, K+, NH4 +, Cl?, SO4 2 ?, NO3 ?) and organic (HCOO?, CH3COO?) ions content were determined using Ion Chromatography. The analyzed 631 rainfall events represent 8420.9 mm of rainfall from a 9631.1 mm total. The precipitation chemistry at Lamto is influenced by four main sources: natural biogenic emissions from savanna soils (NO x and NH3), biomass burning (savanna and domestic fires), terrigeneous particles emissions from dry savanna soils, and marine compounds embedded in the summer monsoon. The inter-annual variability of the weighted volume mean concentration of chemical species linked with wet deposition fluctuates by ~ 20% over the period. Ammonium concentration is found to be the highest (17.6 μ eq.l? 1) from all IDAF sites belonging to the West Africa ecosystems. Ammonia sources are from domestic animals, fertilizers and biomass burning. In spite of the high potential acidity of 30.5 μ eq.l? 1 from NO3 ?, SO4 2 ?, HCOO? and CH3COO?, a relatively weak acidity is measured: 6.9 μ eq.l? 1. The 40% acid neutralization is explained by the acid gas – alkaline soil particles interaction. The remaining neutralization is from inclusion of gaseous ammonia. When results from Lamto, are compared with those from Banizoumbou (dry savanna) and Zoetele (equatorial forest), a regional view for wet tropospheric chemistry processes is obtained. The high concentration of the particulate phase in precipitation emphasizes the importance of multiphases processes between gases and particles in the atmospheric chemistry of the West Africa ecosystems. For example, the nss Ca2 + precipitation content, main indicator of terrigeneous particles, goes from 30.8 μ eq.l? 1 in dry savanna to 9.2 μ eq.l? 1 at Lamto and 8.9 μ eq.l? 1 in the Cameroon forest. A similar gradient is obtained for rainfall mineral particles precipitation content with contribution of 80% in dry savanna, 40% in wet savanna, and 20% in the equatorial forest.  相似文献   

12.
The inorganic chemical composition (major ions and trace metals) of bulk deposition samples collected monthly with bulk collectors at seven Atlantic Coastal European cities (Galicia, Northwest of Spain) during wet season (September 2011 to March 2012) has been assessed and compared. Trace metals (Al, As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) were analysed in soluble fraction and non-soluble fraction (after acid extraction) of the bulk deposition by inductively coupled plasma-mass spectrometry. Major inorganic ions (Cl?, NO3 ?, SO4 2?, Na+, K+, Ca2+, Mg2+ and NH4 +) were analysed in the soluble fraction of the bulk deposition by capillary zone electrophoresis. Univariate analysis (ANOVA and Multiple Range Test) according to the location of each sampling site was performed. Results also suggest a great influence of cleaner Atlantic air masses. After partition coefficients and enrichment factor estimation, similar sources could be assigned for the ionic and metal composition of bulk deposition at seven urban sites.  相似文献   

13.
This study provides an analysis of a five-year time series chemical composition of the bulk deposition (2009–2013), collected within a farm surrounded by industrial and urban settlements in a semi-rural area of the Po Valley, with the aim of characterizing potential emission sources affecting precipitation composition at the site. Most monitoring efforts in this region, recognized as one of the most polluted in the world both due to the intense industrialisation and urbanisation as well as to frequent air stagnation conditions, are presently devoted more to gaseous and particulate pollutants than to precipitation chemistry. The bulk deposition samples were very concentrated in chemical species, both acidic and alkaline, high compared to other polluted sites in the world and to locations in the same district. The mean ions concentrations (in μeq l?1) are: NO3 ? (243) > SO4 2? (220) > PO4 3? (176) > Cl? (153) > NO2 ? (29) > F? (2.6); NH4 + (504) > Ca2+ (489) > K+ (151) > Na+ (127) > Mg2+ (127). pH data shows a trend toward slightly alkaline conditions attributed to the large presence of ammonium and crustal elements, in spite of high concentrations of nitrates and sulphates. The relevant concentrations of Ca2+ and Mg2+ further suggests that these alkaline conditions might be due to the correspondingly significant concentrations of carbonates/bicarbonates in our dataset. While back-trajectories analysis suggests the stronger importance of local resuspension over long-range transport, statistical analyses on ion composition highlight the key role exerted by agricultural activity, especially in the case of NH4 +, K+, Ca2+ and PO4 3? (especially linked to fertilisation practices and soil resuspension due to mechanical operations). Apart from Na+ and Cl? ions which correlate well as expected, indicating their likely common origin from marine salt, the identification of the origin of the other ions is very complex due to the contribution of diverse local sources, such as industrial and residential settlements.  相似文献   

14.
The samples of water-soluble inorganic ions (WSIs), including anions (F?, Cl?, SO42?, NO3?) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56–51.27%, 40.04–60.81%, 42.02–60.81%, and 40.46–57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m? 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42? and NO3? were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl?, SO42? and NO3? were bimodal, peaking at 0.43–0.65 μm and 3.3–5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1–3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43–0.65 μm and a minor one at 3.3–4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.  相似文献   

15.
This study describes the chemical composition of dry deposition collected at a highway traffic site in central Taiwan during daytime and nighttime periods by using a dry deposition plate (DDP) and water surface sampler (WSS). In addition, the characterization for mass and water-soluble species of total suspended particulate (TSP), both PM2.5 and PM10, was studied at the study site from August 22 to November 30, 2006. Dry deposition fluxes of ambient air particulates and inorganic species (Na+, NH4+, K+, Mg2+, Ca2+, Cl, NO3 and SO42−) were analyzed by Ion Chromatography (DIONEX-100).Results of the particulate dry deposition fluxes and mass concentrations are higher in the water surface sampler with respect to the dry deposition plate used in this study. Statistical results also showed the average dry deposition flux of the ionic species (Na+, NH4+, K+, Cl, NO3 and SO42−) obtained by the DDP and WSS displayed significant differences. Also, the average concentrations of Mg2+ and, Ca2+ were statistically the same at this study site.  相似文献   

16.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

17.
A comprehensive study on the chemical compositions of rainwater was carried out from Jan. to Dec. in 2008 in Chengdu, a city located on the acid rain control zone of southwest China. All samples were analyzed for pH and major ions (F, Cl?, NO3?, SO42?, K+, Na+, Ca2+, Mg2+, and NH4+). The pH increased due to the result of neutralization caused by the base ions. It was observed that Ca2+ was the most abundant cation with a VWM value of 196.6 μeq/L (17.3–1568.7 μeq/L), accounting for 49.7% (9.4%–79.2%) of the total cations. SO42? was the most abundant anion with VWM value of 212.8 μeq/L (41.8–1227.6 μeq/L). SO42? and NO3? were dominant among the anions, accounting for 90.4%–99.1% of the total measured anions.The concentrations of NO3? were higher than the most polluted cities abroad, which indicated Chengdu has been a severe polluted city over the world. The high fuel consumption from urbanization and the rapid increase of vehicles resulted in the high emission of SO2 and NOx, which were the precursor of the high concentration of acidic ions NO3? and SO42?. It was the main reason of the severe acid rain in Chengdu.The high concentrations of alkaline ions (mainly Ca2+, NH4+) in Chengdu city atmosphere have played an important role to neutralize the acidity of rainwater and the pH value has increased by 0.7 units since 1989. It is worth noting that the emission of NOx from the automobile exhaust is increased and is becoming the important precursor of acid rain now.  相似文献   

18.
In November 2004–January 2005, a micro orifice uniform deposit impactor (MOUDI) and a Nanometer (nanometer)-MOUDI were used in the center of Taiwan to measure particle size (18 nm particle size 18 μm) distributions of atmospheric aerosols at a traffic site during the winter period. The average Mass in Media Aerodynamic Diameter (MMAD) of suspended particles is 0.99 μm this study. As for the ultra fine and nanometer (nanometer) particle mode, the composition order for these major ions species was SO42− NH4+ NO3 Mg2+ Ca2+ Na+ K+ Cl. An ion Chromatography (DIONEX-100) was used to analyze major anion species, Cl, NO3, SO42− and cation species, NH4+Na+, K+, Ca2+Mg2+. Their concentrations were also extracted from various particles size modes (nanometer (nanometer), ultra fine, fine and coarse). The results obtained in this study also indicated that the average portions for the major ionic species (SO42−, NH4+ and Mg2+) in the nanometer (nanometer), ultra fine, fine and coarse particulate modes are about 34%, 37%, 63% and 30%, respectively at this traffic sampling site during the winter period.  相似文献   

19.
Temporal trends in wet deposition of major ions were explored at nationwide remote sites in Japan from April 1991 to March 2009 by using the seasonal Kendall slope estimator and the nonparametric seasonal Kendall test. For the trend analysis, datasets from eight remote sites (Rishiri, Echizenmisaki, Oki, Ogasawara, Shionomisaki, Goto, Yakushima, and Amami) were selected from the Japanese Acid Deposition Survey (JADS) conducted by the Ministry of the Environment. Deposition of H+ has been increasing at remote sites in Japan on a national scale. Significant (p????0.05) increases in H+ deposition were detected with changes of +3?C+9?%?year?1 at seven sites, while insignificant increases were observed at one site. Depositions of non-sea salt (nss)-SO 4 2? and NO 3 ? significantly increased at four and six sites, respectively, with changes of +1?C+3?%?year?1. Significant increases in precipitation at four sites would have contributed to the increase in depositions of H+, nss-SO 4 2? , and NO 3 ? . The emission trends of SO2 and NOx did not corresponded to the deposition trends of nss-SO 4 2? and NO 3 ? . The different trends indicated that temporal variation of precipitation amount trend dominated the deposition trends.  相似文献   

20.

Pre and Post-Monsoon levels of ambient SO2, NO2, PM2.5 and the trace metals Fe, Cu, etc. were measured at industrial and residential regions of the Kochi urban area in South India for a period of two years. The mean PM2.5, SO2 and NO2 concentrations across all sites were 38.98?±?1.38 µg/m3, 2.78?±?0.85 µg/m3 and 11.90?±?4.68 µg/m3 respectively, which is lower than many other Indian cities. There was little difference in any on the measured species between the seasons. A few sites exceeded the NAAQS (define acronym and state standard) and most of the sites exceeded WHO (define acronym and state standard) standard for PM2.5. The average trace metal concentrations (ng/m3) were found to be Fe (32.58)?>?Zn (31.93)?>?Ni (10.13)?>?Cr (5.48)?>?Pb (5.37)?>?Cu (3.24). The maximum concentration of trace metals except Pb were reported in industrial areas. The enrichment factor, of metals relative to crustal material, indicated anthropogenic dominance over natural sources for the trace metal concentration in Kochi’s atmosphere. This work demonstrates the importance of air quality monitoring in this area.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号