首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 692 毫秒
1.
全球环境污染形势依然严峻,加大地热等可再生能源开发力度已成为人类社会的共识。在系统梳理河南漯河地热地质条件基础上,以新近系明化镇组温热水为主要研究对象,通过采样化验,结合所收集资料,对其水化学场、温度场、同位素等进行研究,提出了漯河地热地质成因模式。研究结果表明:河南漯河温热水水化学类型较为复杂,以Cl-Na型、Cl-Na·Ca型、Cl·SO4-Na型为主,次为Cl·HCO3-Na型和SO4·Cl-Na型。漯河新近系明化镇组地热水以沉积水为主,有少量的侧向补给,补给源主要为来自西部及西北部山丘区的大气降水,循环深度为1 320 m,属于典型的传导型地热系统。  相似文献   

2.
宋小庆  彭钦  段启杉  夏颜乐 《地球科学》2019,44(9):2874-2886
目前在黔东北地区未系统地开展过地热水水文地球化学特征以及地热水来源方面的研究,存在地热水来源、补给区域、径流和排泄等特征不清等问题.在充分了解黔东北地热地质条件的基础上,采集区内15组地热水进行水化学全分析、收集12组地热水氢氧同位素和3组地热水碳同位素数据,得到了该区地热水的水化学特征和同位素特征,分析出地热水的补给来源,估算了地热水的补给高程、补给温度、热储温度、循环深度以及冷水混入比例.结果表明,受地形地貌及地质构造的影响,该区地热水总体由南向北径流,水化学类型主要为HCO3·SO4-Ca·Mg、HCO3-Ca·Mg、HCO3-Na、SO4-Ca·Mg及SO4-Ca型,有益元素主要有F-和H2SiO3,沿径流方向地热水呈现pH降低、TDS增加的趋势,水化学类型则由重碳酸盐型水变为硫酸盐型水.同位素分析结果表明,该区地热水补给源为大气降水,补给区为海拔1 500~2 000 m的梵净山地区,地热水年龄为(6 400~11 570)±560 a,补给时的年平均气温为7.0~9.1℃;选用二氧化硅温标及lg(Q/K)-T法估算热储温度为45.0~107.0℃,地热水循环深度为1 000~3 000 m;硅-焓混合模型估算地热水混合前的热储温度极大值为110~200℃,地热水在上升过程中受浅部冷水混合,冷水混入比例为50%~90%.   相似文献   

3.
本次研究通过对韶关地区78处温泉地热流体水化学组分和同位素数据统计分析,总结研究了三种岩性区水化学特征、水—岩相互作用过程、深部热储温度和地热水补给来源等,为区内温泉资源可持续开发利用提供科学依据。研究区地热流体TDS浓度平均值在侵入岩区、碳酸盐岩区和碎屑岩区分别为233.82 mg/L,705.35 mg/L和909.14 mg/L,从侵入岩区—碳酸岩盐区—碎屑岩区,TDS,K+,Cl-,SO42-,HCO3-浓度呈升高趋势。侵入岩区地热流体水化学类型以HCO3-Na, HCO3-Na-Ca型为主,碳酸盐岩区以HCO3-Ca, SO4-Ca型为主,而碎屑岩区常见HCO3-SO4-Na, SO4-HCO3-Na-Ca等类型。三种岩性区地热流体γNa/γCl值在1.48~158.86之...  相似文献   

4.
石城地热带蕴藏着丰富的地热资源,从水文地球化学角度系统研究其地热水演化机理,对支撑地热带盲区靶区优选和隐伏型地热水的发掘,对推动地热资源的可持续规模化开发利用具有重要意义。本文在充分分析石城地热带地热地质条件的基础上,根据地热水与冷水水化学分析结果,采用Piper三线图、溶质间相关分析、地球化学温标法等手段,对地热水化学特征、矿物元素来源、热储温度与埋藏条件、浅层冷水的混合机制等进行了讨论分析。结果表明,石城地热带所有地热田同属一个地热系统,大气降水在北东部牙梳山中低山区自然入渗补给,深部循环获取幔源大地热流的供热,并与营上岩体富钾花岗岩充分水-岩作用富集K+、SiO2等矿物元素,遇石城断裂阻水后转向南西侧向径流和浅部排泄。地热水水质由HCO3-Ca型向SO4-Na型、SO4·HCO3-Na·Ca型、HCO3-Na·Ca型转化,这种分带性是受深部地热水径流距离、浅部冷水混合比例、上涌途经地层与矿体特征等联合控制的结果。  相似文献   

5.
为分析济源市盘古寺-五龙口断裂带地热区地热水化学特征和估算地热资源量,在分析地热区地质背景的基础上,根据地热井地热水水质分析结果,采用Gibbs图对地热水的水化学类型和地热水化学组分成因进行分析,采用热储法对地热区的地热资源量进行估算。结果表明,第四系松散岩热储层地热水化学类型为HCO3-Ca·Mg型,寒武系—奥陶系碳酸盐岩热储层地热水化学类型为SO4·HCO3-Na·Ca型,太古界片麻岩热储层地热水化学类型为Cl·SO4-Na型,化学组分的形成主要受水岩作用与蒸发作用控制;地热区热储中储存的热量为3.62×1016J,可开采热量为4.79×1015J,为该地热区地热资源的开发利用提供参考。  相似文献   

6.
吴大焕 《矿产与地质》2022,(4):768-775+804
福建平和下汤地热田属中低温地热田Ⅱ-2类型,热储呈带状分布,受构造断裂控制,地热田规模较小,地面有温泉出露。通过地质调查、地球物理勘查、钻探、降压试验、水质分析等手段,研究结果表明,下汤地热田探明的地热流体可开采量为1078.78m3/d,水温56.53℃,可命名为理疗硅酸水,水化学类型为HCO3SO4-Na型。地热流体是地下水经过断裂传导的地壳深部热源的加热并进行长距离、深循环后形成的。  相似文献   

7.
以河北北部承德地区的4处温泉,漠河沟温泉(A10)、三道营温泉(A11)、山湾子温泉(A12)和北大坝温泉(A13)为研究对象,根据2010年与2018年的温泉水样测试数据,分析温泉的水化学特征,并总结其成因模式。研究区出露地层主要有中新元古界、二叠系、三叠系、侏罗系、白垩系和新近系以及第四系,并伴随有大量侵入岩岩体。温泉的出露温度为36~75 ℃,pH值为7.2~8.2,TDS均小于1 g/L。研究区温泉阳离子均以Na+占绝对优势,毫克当量百分数在90%以上,阴离子主要以HC O 3 -和S O 4 2 -为主,4处温泉的水化学类型分别为SO4·HCO3-Na型、HCO3·SO4-Na型、HCO3-Na型和SO4·HCO3-Na型,且温泉的偏硅酸和F-含量高。研究区温泉稀土元素总含量(∑REEs)为0.030~15.525 μg/L,主要以碳酸盐络合物和F的络合物形式存在;地下热水的稀土元素球粒陨石标准化配分模式较为平缓,轻稀土元素略显富集。研究区温泉水补给主要源于大气降水,利用 SiO2 温标估算的温泉地下热储温度为85~125 ℃,地下热水经深循环后通过接触带、破碎带或导水断裂上升出露地表。  相似文献   

8.
地热水资源的形成与演化过程认识是区域地热资源科学合理开发利用的重要基础.运用水化学及同位素分析方法,结合区域地质构造特征,系统揭示了海南东海岸官塘地区地热水水化学特征、地热储温度以及补给来源,构建了官塘地区地热水循环演化概念模型.研究结果表明:该区地热水水化学类型主要为HCO3·SO4-Na型,其组分主要来源于硅酸盐矿物溶解及深部CO2等气体;地热水主要受到大气降水补给,补给海拔约为1 122.2~1 569.4 m,并且地热水上升过程中与浅部地下水之间存在较为显著的混合作用.在考虑混合和蒸汽损失的条件下,深部地热水与冷水混合前蒸汽损失的质量百分比约为18.2%~25.2%,地热水温度为190.4~217.8℃,冷水混合比例可达到66.8%~80.8%.该地区地热水开发程度逐年提高,导致地热水水位大幅下降,使得浅部冷水补给量增大,这可能是造成该地区开采地热水温度下降的关键影响因素.  相似文献   

9.
牟海斌  邹愈  郭鹏 《地下水》2022,(3):13-16+121
了解区域地下水的水化学特征及其形成作用,对地下水环境的保护及地下水资源的合理利用具有重要意义。在高陵县幅1:5万水文地质调查基础上,系统采集区内河水与地下水水样,结合研究区水文地质条件,对区内地下水水化学特征与形成作用开展了研究。通过对水质结果进行统计分析,得出不同区域地下水水化学类型及主要离子浓度特征,将本区地下水分为HCO3-Na·Mg型、HCO3·SO4-Na·Mg型、HCO3·SO4·Cl-Na·Mg型及SO4·Cl-Na·Mg型四种类型水。运用水化学参数相关性分析、阴阳离子Piper三线图、Gibbs图、离子比例系数等方法对区域地下水水化学空间分布及演化特征进行综合分析,得出区内地下水的水化学成因主要为溶滤作用和蒸发浓缩作用,由补给区到径流排泄区,地下水水化学类型由HCO3-Na·Mg型过渡到HCO3·SO4-Na·Mg型,再近一步演化为HCO3·SO  相似文献   

10.
新疆地区属于西北干旱地区,水资源紧缺,为了研究其地下水的水文地球化学特征及水质情况,在博阿断裂附近采集与收集温泉水、地表水和冷泉水共15个样品,进行了水化学和氢氧同位素特征分析,并进行了水质评价。结果表明,研究区地表水的水化学类型主要为SO4-Na、Cl·SO4-Na和HCO3·SO4-Ca·Na型。温泉水的水化学类型为SO4·HCO3-Na/HCO3·SO4-Na和HCO3·Cl-Na型。冷泉水的水化学类型为SO4·HCO3-Mg·Ca、HCO3-Ca、HCO3-Mg·Ca和SO4·HCO3-Ca型。研究区冷泉水中Mg2+、Ca2+、HCO3-的主要来源是白云石、方解石和石...  相似文献   

11.
根据盐池-定边地区水化学场分布特征及其自然地理、地质构造、水文地质背景、岩相古地理和古水文地质条件,以水文地球化学理论为指导,采取野外水文地质调查、水样采集与测试及水文地球化学方法分析研究了该水化学场的形成机理及影响因素.研究表明,鄂尔多斯盆地盐池-定边地区水化学场分布主要有SO4·Cl-Na·Mg型、HCO3·SO4-Na型、HCO3·Cl-Na·Ca型和HCO3-Ca·Na型场,在白于山分水岭向北和西北的水平分带明显,水化学场与地下水流向呈逆向分布.本区水化学特征主要受古沉积中心及地层原始含盐量、地质构造、混合作用、地下水运动规律、古地下水等综合因素的影响.  相似文献   

12.
大气 CO2浓度在控制全球气候变化方面具有至关重要的作用,研究碳循环、CO2收支平衡和精确评估是制定区域CO2减排策略和寻找新的碳汇途径最重要的组成部分。碳酸盐风化碳汇是全球碳循环研究的一个重要方向。为此,本研究以天津平原区浅层地下水为研究对象,通过对地下水调查及水样的采集与分析,运用水化学分析方法分析了地下水水化学特征,并估算了地下水总储存量、DIC储量和碳酸盐风化碳汇量。研究结果表明:浅层地下水化学场自北部山前平原向南部冲积平原和滨海平原,呈现出自北而南和由北西向南东的水平水化学分带规律,地下水由低浓度的淡水、微咸水变为高浓度咸水,沿此方向水化学类型由HCO3-Ca·Na·Mg→Cl·SO4-Na→Cl·HCO3-Na→Cl-Na型转变;淡水区、微咸水区和咸水区面积分别为733、3 034和6 564 km2。地下水水化学组分中Ca2+、Mg2+ HCO 3 -主要来源于碳酸盐的溶解作用。研究区浅层地下水总储存量为2 241 640万m3,总DIC储量为8.13×106 t,总碳汇量为4.11×106 t。研究区浅层地下水淡水区、微咸水区和咸水区地下水储存量分别为157 799万、6 245 936万和1 459 247万 m3,DIC浓度分别为19200、19200和19342 mg/L,DIC储量分别为0.67×106、1.65×106和0.58×106 t,碳汇量分别为0.22×106、0.90×106和2.98×106 t。沿地下水流向,DIC、储量和碳汇量的空间分布均呈现出由低到高的趋势。  相似文献   

13.
朱喜  王贵玲  马峰  张薇  张庆莲  张汉雄 《地球科学》2021,46(7):2594-2608
雄安新区蓟县系雾迷山组热储层中具有丰富的中低温地热资源,研究其地热流体水文地球化学特征可分析地热资源的形成机制,对推动雄安新区深部地热资源有效开发利用具有重要意义.太行山区雾迷山组为基岩裸露区,雄安新区雾迷山组基底埋藏较深,两个系统的地热流体经历不同的水岩相互作用,导致水化学特征有一定差异.通过对保定以西太行山区-雄安新区共26组蓟县系雾迷山组地热流体样品的水化学及同位素数据进行分析,研究地热流体的补给来源及经历的深部地热循环过程.太行山区雾迷山组流体水化学类型以HCO3-Ca·Mg型为主,雄安新区以Cl·HCO3-Na型为主.地热流体均来源于大气降水,通过断裂、裂隙等通道入渗,在长距离运移过程中伴随有矿物的沉淀和溶解现象,水岩相互作用逐渐增强.深部热循环深度为2 880.26~4 143.42 m,均值为3 700 m,深部热储温度为160℃左右;地热流体在深部通过断裂上升过程中,由于传导冷却、冷水混入及深部热源通过结晶基底的热传导作用,在750~2 100 m的凸起处雾迷山组碳酸盐岩地层中封闭聚集形成热储层,热储平均温度为70℃左右,属于对流-传导型地热系统.   相似文献   

14.
为了揭示地下水由江汉平原周缘向中心径流过程中的水质演化和复杂的水文地球化学作用,以江汉平原西部地区为例,通过数理统计、水化学、同位素地球化学、离子比值关系等方法,开展了江汉平原西部边缘地带浅层孔隙地下水的水文地球化学特征研究。结果表明: 平原区孔隙水以HCO3-Ca·Mg型为主,丘岗区(丘陵和岗地)主要是HCO3-Ca·Mg型,少量为HCO3·SO4-Ca·Mg型,还出现了HCO3·NO3-Ca·Mg型水,总溶解固体(total dissolved solids,TDS)升高主要是由于碳酸盐岩的溶解; 浅层孔隙水均来源于大气降水,蒸发作用对该地区孔隙水的影响较小; 方解石、白云石和石膏的溶解主导研究区的水文地球化学过程,也是孔隙水中Ca2+、Mg2+的主要来源,Na+和K+的主要来源是阳离子交换吸附。  相似文献   

15.
为了揭示地下水由江汉平原周缘向中心径流过程中的水质演化和复杂的水文地球化学作用,以江汉平原西部地区为例,通过数理统计、水化学、同位素地球化学、离子比值关系等方法,开展了江汉平原西部边缘地带浅层孔隙地下水的水文地球化学特征研究。结果表明: 平原区孔隙水以HCO3-Ca·Mg型为主,丘岗区(丘陵和岗地)主要是HCO3-Ca·Mg型,少量为HCO3·SO4-Ca·Mg型,还出现了HCO3·NO3-Ca·Mg型水,总溶解固体(total dissolved solids,TDS)升高主要是由于碳酸盐岩的溶解; 浅层孔隙水均来源于大气降水,蒸发作用对该地区孔隙水的影响较小; 方解石、白云石和石膏的溶解主导研究区的水文地球化学过程,也是孔隙水中Ca2+、Mg2+的主要来源,Na+和K+的主要来源是阳离子交换吸附。  相似文献   

16.
查孜地热田位于青藏高原西南部。通过野外地质调查及地热钻孔揭露,发现该地热田具有较好的地热资源开发潜力。对该地热田地下热水的水文地球化学及同位素特征开展研究,发现地下热水为HCO3-Na型; 热水与冷水的离子浓度存在差异,显示二者具有不同的物质来源,但又具有一定的水力联系。热水中的δD和δ18O同位素特征表明: 该地热田地下热水的主要补给来源为大气降水和冰雪融水,补给海拔为5 652 m以上; 大气降水和冰雪融水下渗并与沿断裂破碎带向上运移的地热流体混合后形成地下热水。断裂破碎带不仅是温泉的主要通道,也是地热流体的储集场所,地热田热水在地下运移滞留至少41 a。据SiO2地热温标估算得出,该区地下热储温度为148.18 ~153.49 ℃,天然放热量为2 264.33×1012 J/a。  相似文献   

17.
Chazi geothermal field is located in Southwestern Tibetan Plateau. The geothermal potential has been ascertained by field survey and geothermal drilling. The hydrogeochemical characteristics and isotopic composition of this geothermal field show that the underground water belongs to HCO3-Na. The difference of ion concentration between hot water and cold water shows that they have different material sources and certain hydraulic relations. The isotope analysis of δD and δ18O determines that the major source of the geothermal water in this area is meteoric water and water melt from the mountains snow and ice with the height above 5 652 m. The geothermal water was the result of the mixture of deep infiltrated meteoric water and deep-source fluid when they move along the fracture zone. The fracture zone is the main channel of hot spring and the reservoir of geothermal fluid. The migration retention time of the geothermal water in this geothermal field was at least 41 years. According to the calculated temperature of SiO2 geothermometer, the geothermal temperature of the underground heat reservoir is about 148.18~153.49 ℃, and natural heat discharge is 2 264.33×1012 J/a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号