共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial transport experiments in fractured crystalline bedrock 总被引:5,自引:0,他引:5
The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale. 相似文献
2.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA 相似文献
3.
The geochemical computer model PHREEQC can simulate solute transport in fractured bedrock aquifers that can be conceptualized as dual-porosity flow systems subject to one-dimensional advective-dispersive transport in the bedrock fractures and diffusive transport in the bedrock matrix. This article demonstrates how the physical characteristics of such flow systems can be parameterized for use in PHREEQC, it provides a method for minimizing numerical dispersion in PHREEQC simulations, and it compares PHREEQC simulations with results of an analytical solution. The simulations assumed a dual-porosity conceptual model involving advective-reactive-dispersive transport in the mobile zone (bedrock fracture) and diffusive-reactive transport in the immobile zone (bedrock matrix). The results from the PHREEQC dual-porosity transport model that uses a finite-difference approach showed excellent agreement compared with an analytical solution. 相似文献
4.
Interaction between runoff – bedrock groundwater in a steep headwater catchment underlain by sedimentary bedrock fractured by gravitational deformation 下载免费PDF全文
Recent studies have suggested the importance of the bedrock groundwater (BG) contribution in storm runoff in headwater catchments. However, few such studies have been conducted, and the study of different types of bedrock conditions is still ongoing. The role of BG in storm runoff is still poorly understood, particularly in headwater catchments underlain by relatively deep fractured bedrock. This study aims to clarify this role using hydrometric and hydrochemical observations of BG via boreholes and catchment discharge. The responses of the BG to rainfall are demonstrated to be fast and independent of the sediment cover. The BG exhibits different responses and flow paths that are largely controlled by the bedrock fracture system. The storm runoff in the studied catchment is characterized by rapid discharge response generally followed by a delayed discharge response. The peak of the delayed discharge is much faster than that observed in previous studies, and it is well correlated with the BG levels. A hydrograph separation was performed for two storm events using three end members: rainfall, shallow BG and deep BG. The results demonstrate that the delayed discharge is primarily composed of deep BG. Moreover, a significant contribution of shallow BG is observed during large precipitation events. Although we observed no physical evidence of direct contributions of BG in the catchment, the calculations presented in this study demonstrate that the BG controls the hydrological and hydrogeological response of the catchment to rainfall events. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
超声波数据是研究碳酸盐岩储层孔隙结构的重要资料,超声波响应可用来反演孔隙结构.本文从声波波动理论出发,以裂缝模型为研究对象,开展超声波数值模拟研究.结果表明:随着裂缝孔隙度的增加,岩石声波衰减系数总体呈上升趋势,但孔隙度增长方式不同,衰减系数的递增函数规律亦不同;随着裂缝延伸方向与声波激发方向的夹角增大,岩石声波的衰减系数线性增加;衰减系数随着裂缝密度增大呈幂函数规律递增;利用数值模拟的方法能避免人为误差、节约实验成本,为裂缝结构的岩石声波实验研究拓展了思路. 相似文献
6.
Remote sensing and geoelectrical methods were used to find water-bearing fractures in the Scituate granite under the Central Landfill of Rhode Island. These studies were necessary to evaluate the integrity of the sanitary landfill and for planning safe landfill extensions. The most useful results were obtained with fracture trace analysis using Landsat and SLAR imagery in combination with ground-based resistivity measurements using Schlumberger vertical electrical soundings based on the assumption of horizontally layered strata. Test borings and packer tests confirmed, in the presence of a lineament and low bedrock resistivity, the probable existence of high bedrock fracture density and high average hydraulic conductivity. However, not every lineament was found to be associated with high fracture density and high hydraulic conductivity. Lineaments alone are not a reliable basis for characterising a landfill site as being affected by fractured bedrock. Horizontal fractures were found in borings located away from lineaments. High values of hydraulic conductivity were correlated with low bedrock resistivities. Bedrock resistivities between 60 and 700 Ω m were associated with average hydraulic conductivities between 4 and 60 cm/day. In some cases very low resistivities were confined to the upper part of the bedrock where the hydraulic conductivity was very large. These types of fractures apparently become narrower in aperture with depth. Bedrock zones having resistivities greater than 1000 Ω m showed, without exception, no flow to the test wells. Plots of bedrock resistivity versus the average hydraulic conductivity indicate that the resistivity decreases with increasing hydraulic conductivity. This relationship is inverse to that found in most unconsolidated sediments and is useful for estimating the hydraulic conductivity in groundwater surveys in fractured bedrock. In appropriate settings such as the Central Landfill site in New England, this electric-hydraulic correlation relationship, supplemented by lineament trace analysis, can be used effectively to estimate the hydraulic conductivity in bedrock from only a limited number of resistivity depth soundings and test wells. 相似文献
7.
Broadband (100–4000 Hz) cross‐hole seismic data have been acquired at a borehole test site where extensive hydrological investigations have previously been performed, including in situ estimates of permeability. The rock type is homogeneous chalk and fractures and bedding planes have been identified from well logs. High values of seismic attenuation, Q= 22 ≤ 27 ≤ 33, were observed over a 10 m depth interval where fracture permeability values of 20–50 darcy had been recorded. An attempt has been made to separate the attenuation due to scattering and intrinsic mechanisms. The estimated values of intrinsic attenuation, Q= 31 ≤ 43 ≤ 71, have been reproduced using a number of current theories of seismic‐wave propagation and fluid‐flow‐induced seismic attenuation in cracked and fractured media. A model that considers wavelength‐scale pressure gradients is the preferred attenuation mechanism. Model parameters were obtained from the hydro‐geological and seismic data. However, we conclude that it is not possible to use seismic Q to measure rock permeability remotely, principally because of the inherent uncertainties arising from model parameterisations. 相似文献
8.
A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green’s function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx (q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large. 相似文献
9.
裂缝广泛分布于各类储层岩石中, 并且会显著提高储层的渗流能力.因此, 裂缝的评价和表征对于提高油气产能具有重要意义.由于裂缝与背景介质之间的波致流会显著影响地震波的频散和衰减特性, 所以地震勘探是评价裂缝性储层的有效手段.裂缝地震定量表征的前提是要基于含裂缝岩石中波致流对频散和衰减的影响建立含裂缝岩石物理特性与地震性质的关系.然而, 目前相关的理论研究大部分基于各向同性背景这一假设, 难以有效应用于常见的各向异性储层.本文针对背景为各向异性的含裂缝岩石提出了频散和衰减的计算方法.该方法首先将含裂缝岩石中的各向异性背景介质等效为层状背景介质; 然后, 通过分析不同频率下层状含裂缝岩石中的流体压力分布, 理论计算了两个特定的中间频率并求解得到两个中间频率下的弹性参数; 进一步, 以计算得到的两个特定中间频率以及高低频极限下的弹性参数为基础, 应用数值方法求解得到弛豫函数中的未知参数, 最终实现了背景为各向异性含裂缝岩石中频散和衰减的理论模拟.通过将理论预测结果与实验测量和数值模拟结果进行对比, 验证了该方法在背景为各向异性含不同分布裂缝岩石中的有效性.本文提出的方法考虑了常见的各向异性背景对含裂缝岩石频散和衰减的影响, 因而在裂缝性储层的地震勘探中具有广泛的应用前景.
相似文献10.
Boris Gurevich Miroslav Brajanovski Robert J. Galvin Tobias M. Müller Julianna Toms-Stewart 《Geophysical Prospecting》2009,57(2):225-237
Natural fractures in hydrocarbon reservoirs can cause significant seismic attenuation and dispersion due to wave induced fluid flow between pores and fractures. We present two theoretical models explicitly based on the solution of Biot's equations of poroelasticity. The first model considers fractures as planes of weakness (or highly compliant and very thin layers) of infinite extent. In the second model fractures are modelled as thin penny-shaped voids of finite radius. In both models attenuation is a result of conversion of the incident compressional wave energy into the diffusive Biot slow wave at the fracture surface and exhibits a typical relaxation peak around a normalized frequency of about 1. This corresponds to a frequency where the fluid diffusion length is of the order of crack spacing for the first model and the crack diameter for the second. This is consistent with an intuitive understanding of the nature of attenuation: when fractures are closely and regularly spaced, the Biot's slow waves produced by cracks interfere with each other, with the interference pattern controlled by the fracture spacing. Conversely, if fractures are of finite length, which is smaller than spacing, then fractures act as independent scatterers and the attenuation resembles the pattern of scattering by isolated cracks. An approximate mathematical approach based on the use of a branching function gives a unified analytical framework for both models. 相似文献
11.
Jae Gon Kim Gyoo Ho Lee Jin‐Soo Lee Chul‐Min Chon Tack Hyun Kim Kyoochul Ha 《水文研究》2006,20(2):241-250
We examined the infiltration pattern of water in a regolith–bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black‐coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X‐ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS–WM1, PS–WM2 and PS–BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
The presence of fractures in fluid‐saturated porous rocks is usually associated with strong seismic P‐wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave‐induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave‐induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub‐millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P‐wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi‐static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex‐valued and frequency‐dependent. By using laboratory measurements of stress‐induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism. 相似文献
13.
Rounded and indented bedrock fragments amongst pyroclastics are evidence of fluidisation during maar eruption. Some fragments also show shrinkage cracks caused by volcanic heat. Compaction of bedding may form striated cone-like features after deposition. 相似文献
14.
We show that the multiple scattering by small fractures of seismic waves with wavelengths long compared to the fracture size and fracture spacing is indistinguishable from multiple-scattering effects produced by regular porosity, except for an orientation factor due to fracture alignment. The fractures reduce theP-wave andS-wave velocities and produce an effective attenuation of the coherent component of the seismic waves. The attenuation corresponds to 1000/Q of about unity for a Gaussian spectrum of fractures, and it varies with frequencyf asf
3. For a Kolmogorov spectrum of fractures of spectral index the attenuation is an order of magnitude or so larger and varies with frequency asf
3-v The precise degree of attenuation depends upon the matrix properties, the fracture porosity, the degree of fracture anisotropy, the type of fluid filling the fractures, and the incidence angle of the wave.For fracture porosities less than about 15% theP-wave andS-wave velocities are decreased by the order of 5–10% with a lesser dependence on the type of fluid filling the fractures (gas, oil, or brine) and with a dependence on both the degree of anisotropy and the incident angle made by the wave. The tendency of fractures to occur perpendicularly to bedding suggests that the best way to measure seismically fractured rock behavior in situ is by using the travel-time delay and reflection amplitude. As both the offset and the azimuth of receivers vary from a shot, the travel-time delay and reflection amplitude should both show an elliptical pattern of behavior—the travel-time delay in response to the varying seismic speed, and the reflection amplitude in response to angular variations in the multiple scattering. Observations of attenuation at several frequencies should permit (a) determination of the spectrum of fractures (Gaussian versus Kolmogorovian) and (b) determination of the contribution of viscous damping to the effective attenuation. 相似文献
15.
More than 70 individual VOCs were identified in the leachate plume of a closed municipal landfill. Concentrations were low when compared with data published for other landfills, and total VOCs accounted for less than 0.1% of the total dissolved organic carbon. The VOC concentrations in the core of the anoxic leachate plume are variable, but in all cases they were found to be near or below detection limits within 200 m of the landfill. In contrast to the VOCs, the distributions of chloride ion, a conservative tracer, and nonvolatile dissolved organic carbon, indicate little dilution over the same distance. Thus, natural attenuation processes are effectively limiting migration of the VOC plume. The distribution of C2-3-benzenes, paired on the basis of their octanol-water partition coefficients and Henry's law constants, were systematically evaluated to assess the relative importance of volatilization, sorption, and biodegradation as attenuation mechanisms. Based on our data, biodegradation appears to be the process primarily responsible for the observed attenuation of VOCs at this site. We believe that the alkylbenzenes are powerful process probes that can and should be exploited in studies of natural attenuation in contaminated ground water systems. 相似文献
16.
Norikazu Matsuoka 《地球表面变化过程与地形》2001,26(6):601-614
Width and temperature of rock joints were automatically monitored in the Japanese Alps. Three years of monitoring on a sandstone rock face shows two seasonal peaks of joint widening in autumn and spring. The autumn events are associated with short‐term freeze–thaw cycles, and the magnitude of widening reflects the freezing intensity and water availability. The short‐term freezing can produce wedging to a depth of at least 20 cm. The spring events follow a rise in the rock surface temperature to 0 °C beneath the seasonal snowcover, and likely originate from refreezing of meltwater entering the joint. Some of these events contribute to permanent enlargement of the joint. Two other joints on nearby rock faces experience only sporadic widening accompanying freeze–thaw cycles and insignificant permanent enlargement. Observations indicate that no single thermal criterion can explain frost weathering. The temperature range at which wedging occurs varies with the bedrock conditions, water availability and duration of freezing. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
17.
以Courllot、Yangshen、Fenglin Niu等人的几篇文章为基础介绍了目前对热柱起源较新的研究成果.以及如何利用地震学方法来研究冰岛热柱及南太洋超级隆起区的起源。 相似文献
18.
A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by biodegradation in the complex fractured rock aquifer. It is highly recommended to revisit the study when the municipal well is back into full operation. 相似文献
19.
20.
Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100 cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the “small-scale” or “narrow” dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently “bent over” toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1 h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1 km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. 相似文献