首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用郑州新郑机场跑道两端自动观测系统风速表资料,分析了机场跑道升降区域的低空风切变,结果表明:发生低空风切变时,地面2分钟最大和最小风速差值在15 m/s以上;发生低空风切变前1~2 h,风向变化频率明显增加。  相似文献   

2.
利用郑州新郑机场跑道两端自动观测系统风速表资料,分析了机场跑道升降区域的低空风切变,结果表明发生低空风切变时,地面2分钟最大和最小风速差值在15m/s以上;发生低空风切变前1~2h,风向变化频率明显增加.  相似文献   

3.
天津塔层风切变的研究   总被引:2,自引:1,他引:2  
赵鸣  唐有华  刘学军 《气象》1996,22(1):7-12
根据天津气象铁塔1990-1992年冬季8个月的风速、风向、温度等资料的分析,得到了天津250m以下边界层中风切变的若干特征,如风垂直分布幂次律中指数p的时空变化及频数分布,各层各时段风切变的频数分布,风切变与温度梯度、稳定度的关系。这些特征有助于对城市下垫面塔层中风垂直分布的了解。还分析了冷锋过境前后风切变及温度状 的分布情况。  相似文献   

4.
一次低空水平风切变的小尺度特征分析   总被引:2,自引:0,他引:2  
张银昌  黄菲 《气象》2007,33(2):10-14
低空风切变对日益繁忙的机场越来越构成威胁,为了解其发展过程和规律,就青岛机场2002年3月20日06时37分左右(UTC)发生的一次强低空风切变进行了小尺度特征的分析,揭示了这种风切变产生的小尺度风压场调整过程的特征。分析的资料是从机场的自动观测系统中提取的风切变前后10分钟的数据。分析发现,在此过程中,最强风切变阶段主要表现为风向的强气旋式切变,而在开始和结束阶段则以跑道南北两侧水平风速切变为主。在风向切变急剧加强阶段,风场向气压场的调整过程占优,导致气压的快速升高,而当气压场向风场的调整过程占优时,跑道南北两侧的风向差又迅速减小。这种局地小尺度水平风切变的产生和发展,是由风场和气压场之阃的相互调整以达到平衡的过程决定的,而这种小尺度的风压场相互适应过程所需要的特征时间则决定了风切变的持续时间。同时还分析了产生这种低空风切变的大尺度天气形势的特点,旨在探索产生强风切变的诱因,有助于预测低空风切变的产生,对飞行人员和航管人员都具有十分重要的意义。  相似文献   

5.
鲅鱼圈地区污染气象特征分析   总被引:4,自引:6,他引:4       下载免费PDF全文
利用近3a的鲅鱼圈地区地面常规气象资料和2005年3~4月鲅鱼圈地区低空污染气象探测资料,分析了鲅鱼圈地区低空污染气象特征。结果表明:鲅鱼圈地区各类型风速廓线出现频率比较均匀,而且由于地面粗糙度较大,因此风速廓线指数比平原地区稍大。  相似文献   

6.
利用风廓线雷达在延吉市开展了边界层风场的探测研究,根据2012年4个月逐日的边界层风场探测资料,分析了延吉市大气边界层风场的时空分布特征,得到了逐月的高空风廓线图。结果表明:1000m以下,水平风速和垂直风速随高度均呈现出增加的趋势,地面风速最小,750-1000m高度处存在明显的风切变层;2月和7月高空水平风速随高度的增加而增加,4月和10月高空水平风速变化呈单峰型的变化趋势;2月垂直风速随高度的增加逐渐增加,7月随高度的增加逐渐减少,4月和10月随高度呈双峰型的变化趋势;各月在1000~2000m高度垂直风速较小;各月水平风除个别高度外均以西风或偏西风为主导风向,垂直方向以下沉气流为主。  相似文献   

7.
8.
重点介绍了不同类型低空风切变的时空尺度和强度标准,具体分析了各种常见的天气条件下出现低空风切变对飞行造成的危害程度,从而给航空器及时提供有指导意义的风切变警报,使气象人员增强对这种潜在危险性天气的了解.  相似文献   

9.
本文使用三江源机场4个声雷达和10个侧向风观测点风向风速资料,分析了三江源机场风的基本气候特征和低空风切变。结果表明:三江源机场主导风向以偏西风为主,跑道周围风速平均值在2.3~3.1m/s之间;水平风速的水平切变主要出现在跑道东头,侧向风切变要明显大于顺风(顺跑道)切变,侧向风切变跑道两头大于中部,东头大于西头;顺风切变跑道北边出现几率和强度明显大于南边。在285m~315m高度出现严重、强烈水平风速的垂直切变的频率最高,水平风速的垂直切变强度较大,出现严重、强烈风切变频率较高;平均而言15m~195m高度和275m~465m高度表现为上升气流,而在195m~265m高度多表现为下沉气流。在雷暴、阵雪、大风等强对流天气下,风速的水平和垂直切变强度均有明显的加强现象。  相似文献   

10.
深圳机场低空风切变分析   总被引:1,自引:0,他引:1  
统计深圳机场1992年开航~1995年4年中发生影响飞行的低空风切变发现,低空风切变多产生于夏半年的4~10月份。从诱因上看,产生低空风切变的天气条件主要是局部和系统性雷暴及台风等对流性天气;冬季强冷空气过境时亦有低空风切变产生。  相似文献   

11.
低空风切变对飞机起飞及着陆的影响   总被引:3,自引:0,他引:3  
对低空风切变影响飞机起飞着陆从理论上进行了分析,给出了造成低空风切变的3种天气背景,并就如何防范低空风切变,确保飞行安全进行探讨。  相似文献   

12.
文章利用二连浩特市2013—2015年高空探测数据,分析近地面层月、四季风向、风速变化,结果表明:2013年和2015年主导风向随着高度的增加由西逐渐向西北方向偏转;2014年主导风向为西北,随着高度的增加风向没有改变。2013—2015年5月距离地面300m高度风速最大,4月和10月次之;从季节来看,风速变化为春季﹥秋季﹥冬季﹥夏季。  相似文献   

13.
青藏高原近地面层微气象学特征   总被引:12,自引:3,他引:12  
利用1998年5月-7月在改则、当雄和昌都三测站获得的近地面层气象要素变化的观测资料,分析了青藏高原近地面层风速、温度和湿度日变化特征及廓线规律,发现高原近地面层微气象学特征具有自己的特点;同时还讨论了高原近地面层白天出现的逆湿现象。  相似文献   

14.
低空风切变的分析与预报   总被引:6,自引:0,他引:6  
俞飞  姬鸿丽 《四川气象》2001,21(3):18-19
低空风切变是飞机起飞和着陆阶段威胁飞行安全的主要危险天气,分为水平风的垂直切变、水平风的水平切变、垂直气流切变三种类型。低空风切变主要是由大气运动的变化所造成,强对流天气、锋面天气、低空急流天气都可能引起低空风切变;另外,特别的地理环境也是不容忽视的因素。  相似文献   

15.
低空风切变是飞机起飞和着陆阶段威胁飞行安全的主要危险天气,分为水平风的垂直切变、水平风的水平切变、垂直气流切变三种类型.低空风切变主要是由大气运动的变化所造成,强对流天气、锋面天气、低空急流天气都可能引起低空风切变;另外,特别的地理环境也是不容忽视的因素.  相似文献   

16.
低空风切变对飞行的影响   总被引:4,自引:0,他引:4  
郭虎道 《四川气象》2001,21(3):20-21
低空风切变是影响飞机起飞和进场着陆阶段的一个危险因素,它严重危害航空活动的安全。同时,它具有时间短、尺度小、强度大的特点,随之带来了探测难、预报难、飞行难等一系列问题,是一个不易解决的航空气象难题。本文试图从纯理论的角度探讨一下风切变是如何影响飞行活动的,从而为低空风切变提供一些理论依据。  相似文献   

17.
根据在桃仙机场所统计的几次低空风切变进行综合分析,旨在探讨低空风切变的形成机制,提高预报技能,为确保飞行安全提供一些有利的依据。  相似文献   

18.
兰州市低空风时空变化特征及其与空气污染的关系   总被引:7,自引:9,他引:7  
对1988年至1992年兰州市环境监测站自动监测系统监测到的近地面逐时风和空气污染浓度资料以及对应时段的兰州市低空风资料乃至城,郊近40年的地面风资料做了深入的分析,并将城区与郊区对照点(榆中站)进行对比研究,揭示了风向频率变化特征和风速日变化,年变化,年际变化以及风随高度的变化规律。同时分析了对应时段空气污染的分布状况及其与风速的相关关系,为研究兰州市边界层大气动力稳定度的时空变化规律和开展空气污染预报提供了一定的依据。  相似文献   

19.
利用2008年3月2011年9月西南地区航空器空中报告,NCEP再分析资料及机场雷达和自动观测资料,对西南地区低空风切变事件进行统计分析,并讨论成都、昆明、贵阳、拉萨和丽江机场低空风切变事件的影响天气系统:西南地区低空风切变事件发生的时间主要集中在春季和夏季,昆明机场风切变事件最多,并且强的低空风切变报告最多,热低压和低空急流是昆明机场低空风切变的主要影响系统,68%的风切变与之有关;拉萨的低空风切变主要受到高空槽过境影响,云贵准静止锋是贵阳机场的主要影响系统;成都机场的低空风切变事件主要是由于对流单体或者雷暴触发的阵风锋引起;利用多普勒雷达能有效检测和预警由阵风锋产生的低空风切变。  相似文献   

20.
利用多普勒雷达对2010年7月9日发生在成都双流机场的两次低空风切变飞行事件进行分析, 这两次低空风切变过程是由中尺度对流系统 (MCS) 产生的阵风锋和下沉气流造成的。利用实时的多普勒气象雷达和地面自动观测数据, 确定阵风锋的传播方向和速度, 估计阵风锋引起的风切变发生的时段和位置;多普勒反射率因子的形态及多普勒速度图像能有效判断下沉气流的区域, 对下沉气流造成的风切变有很好的指示和预警作用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号