共查询到20条相似文献,搜索用时 15 毫秒
1.
Yanxin Wang Teng Ma B. N. Ryzhenko O. A. Limantseva E. V. Cherkasova 《Geochemistry International》2009,47(7):713-724
Mineral equilibria were analyzed in the system As-bearing rock-meteoric water. It was shown that carbonate rocks are the most probable source of As and Sr in the waters of the Datong Basin (People's Republic of China). The reason for groundwater enrichment in As is the shift of the equilibrium FeCO3 (siderite) + H2O = FeOOH(goethite) + CO2(g) + H2(g) to the left (toward siderite formation) owing to organic matter oxidation by atmospheric oxygen and an increase in the equilibrium partial pressure of CO2, while the Eh of the system remains below ?0.30 ± 0.06 V. 相似文献
2.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards. 相似文献
3.
4.
5.
随着我国煤炭资源的枯竭,大量矿山关闭,遗留了广大的地下采空区场地。不少化工企业向废弃矿井内倾倒化学废液等导致了矿区地下水污染事故,威胁地下水水源地的水源安全。针对此类复杂场地条件下污染事故的应急处置案例和经验都非常少,本文以北方某废弃矿区地下水污染注浆帷幕应急处置为例,通过对矿区地质条件的分析、地下空间结构和地下水流场的刻画,构建三维地质模型,以模型为基础设计帷幕注浆工程并实施,研究复杂场地条件下开展帷幕注浆应急处置的重要内容和决定因素,并利用场地地下水样品监测结果,分析研究帷幕内外污染物浓度分布特征及差异,找出地下水运移规律,评价注浆帷幕效果。研究表明:在事故井周边100 m范围实施的帷幕注浆工程,对污染物运移的封堵效果显著,帷幕注浆内外污染物含量差距明显。一期检测结果显示帷幕注浆范围内地下水中二氯甲烷浓度最高1390 μg/L,帷幕范围外最高浓度仅为8. 07 μg/L;二期检测结果为污染物检出浓度大于5 μg/L的区域全部位于帷幕范围内,帷幕范围外均未检出。同时污染物的分布特征指示着地下水沿巷道运移成为最主要的形式,对地下空间结构的精准刻画是决定帷幕注浆工程成效的重要因素。 相似文献
6.
Nitrate contamination of groundwater in an agroecosystem in Zhangye Oasis,Northwest China 总被引:3,自引:2,他引:3
In order to assess the extent of groundwater contamination by nitrate (NO3
−–N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study
was conducted in this area. The mean value of NO3
−–N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3
−–N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3,
52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table
observation wells, respectively. The result showed that the groundwater samples that had NO3
−–N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater
NO3
−–N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher
than those in urban or paddy areas. NO3
−–N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil. 相似文献
7.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions. 相似文献
8.
Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed,North China Plain 总被引:1,自引:0,他引:1 下载免费PDF全文
ZHANG Yu-qin WANG Guang-wei WANG Shi-qin YUAN Rui-qiang TANG Chang-yuan SONG Xian-fang 《地下水科学与工程》2018,6(3):220-233
Water cycle and water quality in the Lake Baiyangdian watershed of the North China Plain have undergone great changes due to over-pumping of groundwater and wastewater discharge.In this paper,hydrogeochemical data was collected to analyze the hydrochemical characteristics and geochemistry evolution of groundwater.The study area was divided into two typical parts.One was in the upstream plain area,where over-pumping had resulted in significant decline of groundwater level;the other one was located in the downstream area near the Fu River and Lake Baiyangdian(Lake BYD region).In addition to the natural weathering of minerals,excessive fertilizer was also a main factor of higher ion concentration in groundwater.According to studies,due to good permeability,these regions were easy to be polluted even with deep groundwater depth.However,upstream shallow groundwater and surface water,including lake water,domestic along with industrial wastewater were all sources of present shallow groundwater in the Lake BYD region.Results indicated that anthropogenic activities rather than minerals much matter to the groundwater in these regions.Particularly,wastewater largely decided the groundwater quality,which suggested that the management and restoration of surface water quality was crucial to groundwater protection. 相似文献
9.
Geochemical characteristics of shallow groundwater in Datong basin, northwestern China 总被引:9,自引:0,他引:9
Located in semi-arid regions of northwestern China, Datong basin is a Quaternary sedimentary basin, where groundwater is the most important source for water supply. It is very important to study groundwater characteristics and hydrogeochemical processes for better management of the groundwater resource. We have identified five geochemical zones of shallow groundwater (between 5 and 80 m) at Datong: A. Leaching Zone (Zone I); B. Converging Zone (Zone II); C. Enriching Zone (Zone III); D. Reducing Zone (Zone IV); E. Oxidizing Zone (Zone V). In Zones I, II, and V and some parts of Zones III and IV, hydrolysis of albite/K-feldspar/chalcedony system and/or albite/K-feldspar/quartz system enhanced concentrations of Na+, K+, HCO3− and silicate. In Zone I, dissolution of carbonate and hydrolysis of feldspar generally controlled the groundwater chemistry. Infiltration of meteoric water promoted the formation of HCO3− in the water. In Zone II, the main geochemical processes influencing the groundwater chemistry were dissolutions of calcite and dolomite, ion exchange and evaporation. In Zones III and IV, in addition to ion exchange, evaporation and precipitation of calcite and dolomite, leaching of NaHCO3 in saline–alkaline soils dominated the water quality. Zone IV was under anoxic condition, and reduction reactions led to the decrease of SO42−, NO3− and occurrence of H2S, with the highest arsenic content (mean value of 366 μg/L), far exceeding Maximum Contaminant Level (MCL). Abnormal arsenic in the groundwater resulted in endemic disease of waterborne arsenic poisoning among local people. Zone V overlapped Zone I was intensively affected by coal mining activities. Sulfide minerals, such as pyrite, would have been oxidized when exposed to air due to coal mining, which directly added sulfate to groundwater and thus increased SO42− concentration. Oxidization of sulfide minerals also decreased pH and promoted dissolutions of calcite and dolomite. 相似文献
10.
大同盆地地下水中砷的富集规律及成因探讨 总被引:10,自引:0,他引:10
大同盆地地下水中砷主要富集在黄水河与桑干河的河间洼地及洪积-冲湖积平原的交接洼地,盆地中心的山阴一带是砷的主要富集区.垂向上,富集在20~200m承压孔隙水中.其中,20~40m及100~150m是主要富集段.盆地周边广布的太古界变质岩及中生界煤系地层是砷的原生物源,盆地内富含有机质的湖相沉积物为次生富砷介质,水化学还原环境是砷由沉积物向地下水中溶解的主要因素.断裂凹陷、低洼地形及细粒的含水介质是形成砷富集的有利条件. 相似文献
11.
Qiao Li Jinlong Zhou Yinzhu Zhou Chunyan Bai Hongfei Tao Ruiliang Jia Yuanyuan Ji Guangyan Yang 《Environmental Earth Sciences》2014,72(11):4249-4263
Groundwater hydrochemistry could reveal the interaction mechanism between groundwater and the environment, which provides a scientific basis for environmental resources management. In this study, Shukaliefu’s classification method and Piper diagram were adopted to determine the hydrochemical types of groundwater in the Tarim Basin of Xinjiang, China. The method of “one-vote veto” was applied to evaluate the quality of groundwater. Phreeqc software was used to calculate the saturation indices of calcite and fluorite in groundwater. By comparing groundwater quality data of 2003 and 2011, we characterized the variations in hydrochemical types and water quality types, salinization of groundwater and fluoride geochemistry of the plain area of the Tarim Basin. Results show that the primary anion in phreatic water in the plain area of the Tarim Basin changed from HCO3 ? to SO4 2? or Cl?. On the contrary, the primary anion in confined water changed from SO4 2? or Cl? to HCO3 ?. In 2003, 63.1 % of the sampling points in the study area exceeded the Class III water quality standard of China. In 2011, the proportion increased to 82.5 %. In addition, severe groundwater salinization was found at 19.7 % of the sampling points. Some of the deep groundwater samples were salinized as well. In the Aksu area at the north-west part of the Tarim Basin, F? concentration exceeding the standard limit (1 mg/L) was found to be 55.0 % of the groundwater samples tested. Based on these findings, it is concluded that the phreatic water in the study area was severely influenced by the industrial wastewater and domestic sewage related to human activities, while the confined water was less affected. The general quality of groundwater was in an aggravation trend, and the groundwater salinization was in a severe condition in this area. The Ca2+–Na+ ionic exchange, the unsaturated fluorite and oversaturated calcite in the aquifer of the Aksu area are proposed to cause F? enrichment in groundwater of this area. 相似文献
12.
太湖流域某地区浅层地下水有机污染特征 总被引:1,自引:0,他引:1
对太湖流域某地区浅层地下水有机污染特征进行了总结,并就污染来源、污染途径和典型污染源附近浅层地下水有机污染特征等问题进行了研究。研究结果表明,该地区浅层地下水中各组分的检出率较高,但检出浓度较低,除苯在个别采样点处超出美国环保局(EPA)饮用水标准外,其余卤代烃和单环芳烃组分均没有超标;平面分布上,卤代烃和单环芳烃各组分的浓度高值点大都集中于该地区东南部的工业区内,这种空间分布特征与工业区的分布具有明显的一致性;垂向上有浅部地下水的污染程度相对较重、深部地下水较轻的特点;典型污染源周边浅层地下水的污染程度较重,但随着采样点远离污染源,地下水中各有机污染组分的浓度迅速衰减。 相似文献
13.
The geochemistry of Boron-rich groundwater of the Karlovassi Basin, Samos Island, Greece 总被引:1,自引:0,他引:1
Michael G. Stamatakis Evangelos P. Tziritis Niki Evelpidou 《Central European Journal of Geosciences》2009,1(2):207-218
The upper Miocene of Karlovassi Basin, Samos Island, Greece, contain continental evaporites such as colemanite, ulexite, celestite, gypsum and thenardite. These evaporites are related with volcanic tuffs, diagenetically altered in a saline-alkaline lake environment. The aim of the present paper is to: a) define the impact of the already known and possible buried borates and other evaporites to the geochemistry of the hydrogeological system of Karlovassi Basin, and; b) to assess the correlation between surface and underground evaporite deposits considering the spatial changes in the concentrations of the examined physicochemical parameters. Fieldwork, laboratory measurements and literature data revealed elevated boron values (2136–33012 ?/L) in the central part of Karlovassi Basin. In the same area, high amounts of strontium, sodium, lithium and sulfates also occur. It is proposed that these ions originate from the leaching of evaporites and authigenic minerals such as the Sr-rich clinoptilolite and the boron-bearing potassium feldspar. Boron values are abnormally high for freshwater aquifers, and are indicative of the presence of buried evaporites in the basin with unknown significance. 相似文献
14.
Liu Mingzhu Alfa-Sika Mande Seyf-Laye Tchakala Ibrahim Djaneye-Boundjou Gbandi Chen Honghan 《Environmental Earth Sciences》2014,72(3):707-715
The identification of sources and behavior of contaminants is important to control and manage groundwater quality of aquifer systems in urban areas. In this study, hydrogeochemistry of major constituents and stable isotope ratios of nitrate in groundwater were determined to identify contamination sources and transformation processes occurring in soils and deeper groundwater of Beijing with intense human activities. The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from groundwater samples indicate at least three potential sources of nitrate in groundwaters at Beijing. Stable isotope analyses from this study site, which has atmospheric, chemical fertilizer and human waste nitrate sources, provide a tool to distinguish nitrate sources in a confined aquifer where concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Beijing are wastewater and denitrification process occurred specially in the Central area. NO3–N and cation and anion concentrations (Ca2+, Mg2+ Cl? and SO 4 2 ) showed strong correlations indicating that they originated from the same sources. This study demonstrates that a thorough evaluation of hydrodynamic and hydrochemical parameters with dual isotopes of NO3 ? constitutes an effective approach for identifying sources and transformation processes of NO3 ? in deeper groundwater systems. 相似文献
15.
Wei ZHANG Congqiang LIU Zhiqi ZHAO 《中国地球化学学报》2006,25(B08):172-172
Boron has two stable isotopes (^10B and ^11B) with relative abundances of about 20% and 80%, respectively. Boron isotopic ratios in natural materials show a huge range of variations, from -70‰ to +60‰, when expressed with the classical δ^11B notation. Most of these isotopic variations occur at the surface of the Earth. Hence, boron isotopic composition can be used as a sensitive tracer in geochemical study, for instance, to identify the different sources of contamination and factors controlling the salinity of groundwater. During the last decade, boron isotopes have been used to discriminate between the influences of seawater intrusion and anthropogenic discharge. But few of those researches can precisely identify the different sources of contamination. We measured the boron concentrations and boron isotopic ratios of groundwater samples collected in Guiyang City, as well as the major ions. The results indicate that the major ion composition of the groundwater in the investigated area is mainly controlled by the interactions between water and the dominant rock i.e. carbonates. All the water compositions are characterized by high concentrations of Ca^2+, Mg^2+, HCO3^-, SO4^2-, and NO3^-, which are the dominant contaminants. Both dissolved boron concentrations and isotopic ratios show large variations among the ground waters, from 2 μg/L to 90 μg/L and from -6‰ to +26‰, respectively. The boron concentrations and isotopic ratios indicate that the river across the studied city has been seriously contaminated by urban discharge. Boron concentrations of fiver water samples varied from 20 μg/L to 140 μg/L, with an average δ^11B value of +2.0‰. Using boron isotopic compositions and different geochemical indices allowed us to clearly identify and distinguish the two major sources of contamination, agricultural activity and urban wastewater. Both of the two sources are characterized by high boron concentrations but their boron isotopic compositions significantly differ. 相似文献
16.
17.
Geological and geochemical study has been carried out to investigate arsenic contamination in groundwater in Nawalparasi, the western Terai district of Nepal. The work carried out includes analyses of core sediments, provenance study by rare earth elements analyses, 14C dating, and water analyses. Results showed that distribution of the major and trace elements are not homogeneous in different grain size sediments. Geochemical characteristics and sediment assemblages of the arsenic contaminated (Nawalparasi) and uncontaminated (Bhairahawa) area have been compared. Geochemical compositions of sediments from both the areas are similar; however, water chemistry and sedimentary facies vary significantly. Extraction test of sediment samples showed significant leaching of arsenic and iron. Chemical reduction and contribution from organic matter could be a plausible explanation for the arsenic release in groundwater from the Terai sediments. 相似文献
18.
Seepage from a tailings dam is the major source of groundwater pollution in the Selebi-Phikwe area, where mining of sulphidic
nickel–copper–cobalt ore started in 1973 and will continue until 2014. The seepage water has a pH in the range of 1.7–2.8
and is strongly enriched in SO4
2− (5,680 g/L) and heavy metals (6,230 μg/L Ni, 1,860 μg/L Cu and 410 μg/L Co). The fracture aquifer affected by pollution from
the dam exhibits a remarkable capacity of heavy-metal sorption. Most of the Ni, Cu and Co is scavenged at less than 500 m
distance downgradient from the polluting source, whereas SO4
2− is not immobilized significantly. The heavy-metal sorption process is assumed to be due to surface complexation, which is
supported by a relatively high groundwater pH (in the range of 6.2–7.8 at >200 m distance from the tailings dam). The objective
of this study is to demonstrate that the sorption process can be incorporated into a realistic three-dimensional reactive-transport
groundwater model that is implicitly charge-balanced. The simulations are performed with the PHAST1.2 program, which is based
on the HST3D flow and transport code and the hydrochemical PHREEQC2.12 code. 相似文献
19.
Chemical data are used to clarify the hydrogeological regime in the Merdja area in Tébessa, as well as to determine the status of water quality in this area. Groundwater from the aquifer in the Merdja area can be divided into two major groups according to geographical locations and chemical compositions. Water in the center part of the area of study is characterized by the dominance of chloride, sulfate, sodium, and potassium; whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Stable isotopes show that the Tébessa aquifers contain a single water type, which originated in a distinct climatic regime. This water type deviates from the Global Meteoric Water Line (MWL), as well as from the Mediterranean meteoric water line. The water is poor in tritium, and thus can be considered generally older than 50 years. Piezometric map suggests that water is moving from the west towards the center of the studied area, and from east towards center. Degradation of water quality can be attributed to agricultural fertilizers in most cases, although the wadi El Kebir River is a contributor to pollution in the middle part of the studied area. 相似文献
20.
Hydrochemical characteristics of groundwater in the Zhangye Basin, Northwestern China 总被引:3,自引:0,他引:3
The Zhangye Basin, located in arid northwest China, is an important agricultural and industrial center. In recent years rapid
development has created an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. Detailed
knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system,
promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical investigation
was conducted in the Zhangye Basin. Types of shallow groundwater in the Zhangye Basin were found to be HCO3
−, HCO3
−–SO4
2−, SO4
2−–HCO3
−, SO4
2−–Cl−, Cl−–SO4
2− and Cl− . The deep aquifer groundwater type was found to be HCO3−–SO42− throughout the entire area. Ionic ratio and saturation index calculations suggest that silicate rock weathering and evaporation
deposition are the main processes that determine the ionic composition in the study area. The suitability of the groundwater
for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. In the study
area, the compositions of the stable isotopes δ18O and δD in groundwater samples were found to range from −4.00 to −9.28‰ and from −34.0 to −65.0‰, respectively. These values
indicate that precipitation is the main recharge source for the groundwater system; some local values indicate high levels
of evaporation. Tritium analysis was used to estimate the ages of the different groundwaters; the tritium values of the groundwater
samples varied from 3.13 to 36.62 TU. The age of the groundwater at depths of less than 30 m is about 5–10 years. The age
of the groundwater at depths of 30–50 m is about 10–23 years. The age of the groundwater at depths of 50–100 m is about 12–29 years.
For groundwater samples at depths of greater than 100 m, the renewal time is about 40 years. 相似文献