首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Oligocene–Miocene carbonate record of the Zagros Mountains, known as the Asmari Formation, constitutes an important hydrocarbon reservoir in southern Iran. This marine carbonate succession, which developed under tropical conditions, is explored in terms of larger foraminiferal biostratigraphy, facies analysis and sequence stratigraphy in a new section at Papoon cropping out in the western Fars sub-basin, in the south-east of the Zagros belt. Facies analysis shows evidence of re-working and transport of skeletal components throughout the depositional system, interpreted here as a carbonate ramp. The foraminifera-based biozones identified include the Globigerina–Turborotalia cerroazulensis–Hantkenina Zone and Nummulites vascus–Nummulites fichteli Zone, both of Rupelian age, the Archaias asmaricus–Archaias hensoni–Miogypsinoides complanatus Zone of Chattian age and the ‘Indeterminate’ Zone of Aquitanian age. The vertical sedimentary evolution of the formation exhibits a progressive shallowing of the facies belts and thus the succession is interpreted as a high-rank low-order regressive systems tract. This long-lasting Rupelian–Aquitanian regressive event is in accordance with accepted global long-term eustatic curves. Accordingly, long-term eustatic trends would have been a factor controlling accommodation during the deposition of the Asmari Formation studied in the western Fars sub-basin.  相似文献   

2.
The OligoceneeMiocene Qom Formation has different depositional models in the Central Iran,SanandajeSirjan and Urumieh-Dokhtar magmatic arc provinces in Iran.The Kahak section of the Qom Formation in the Urumieh-Dokhtar magmatic arc has been studied,in order to determinate its microfacies,depositional model and sequence stratigraphy.The textural analysis and faunal assemblages reveal ten microfacies.These microfacies are indicative of five depositional settings of open marine,patch reef,lagoon,tidal flat and beach of the inner and middle ramp.On the basis of the vertical succession architecture of depositional system tracts,four third-order sequences have been recognized in the OligoceneeMiocene Kahak succession of Qom Formation.Based on the correlation charts,the transgression of the Qom Sea started from the southeast and continued gradually towards the north.This resulted in widespread northward development of the lagoon paleoenvironment in the Aquitanian-Burdigalian stages.Also,the sequence stratigraphic model of the OligoceneeMiocene Qom Formation has an architecture similar to those that have developed from OligoceneeMiocene global sea level changes.  相似文献   

3.
The Asmari Formation(a giant hydrocarbon reservoir)is a thick carbonate sequence of the Oligocenee Miocene in the Zagros Basin,southwest of Iran.This formation is exposed at Tang-e-Lendeh in the Fars interior zone with a thickness of 190 m comprising medium and thick to massive bedded carbonates.The age of the Asmari Formation in the study area is the late Oligocene(Chattian)eearly Miocene(Burdigalian).Ten microfacies are defned,characterizing a gradual shallowing upward trend;the related environments are as follows:open marine(MF 8e10),restricted lagoon(MF 6e7),shoal(MF 3e5),lagoon(MF 2),and tidal fat(MF 1).Based on the environmental interpretations,a homoclinal ramp consisting of inner and middle parts prevails.MF 3e7 are characterized by the occurrence of large and small porcelaneous benthic foraminifera representing a shallow-water setting of an inner ramp,infuenced by wave and tidal processes.MF 8e10,with large particles of coral and algae,represent a deeper fair weather wave base of a middle ramp setting.  相似文献   

4.
The demarcation of the Lower–Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower–Middle Triassic strata of different types, from platform to basin facies, are well developed in Southwest China. This is favorable for the study of the Olenekian–Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3, Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N. triangularis Assemblage-Zone; 5, Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early–Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N. triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower–Middle Triassic boundary. The Lower–Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section, whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower–Middle Triassic boundary in South China. Based on the analysis of high-precision and high-sensitivity Secondary Ion Mass Spectrum data, the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9Ma (2s), which is a directly measured zircon U-Pb age of the Lower–Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower–Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower–Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower–Middle Triassic boundary.  相似文献   

5.
Geluk  M.C.  Röhling  H.-G. 《Geologie en Mijnbouw》1997,76(3):227-246
Detailed log correlations of the largely fluvio-lacustrine Lower Triassic Buntsandstein (Late Permian-Early Anisian), carried out on 80 wells in the Dutch onshore and offshore areas, can be linked to northwest-German high-resolution sequence stratigraphy. The correlations show that cyclic sedimentation occurred in large parts of the basin. Seven 1st-order sequences are recognised, namely the Main Claystone, Rogenstein, Volpriehausen, Detfurth, Hardegsen, Solling and Lower Röt Sequences. They are overlain by the lower part of the Upper Röt–Lower Muschelkalk Sequence. Distinct sequence boundaries have been identified at the bases of four sequences: Volpriehausen, Detfurth, Solling and Upper Röt. The higher-order sequences consist of fining-upwards cycles with a thickness of up to tens of metres. The sequences are laterally persistent and have a characteristic expression on gamma-ray and sonic logs. In the Lower Buntsandstein, they display a uniform character throughout most of the area, with only minor differences in thickness or lithology. NNE-oriented lows and swells were formed during deposition of the Volpriehausen, Detfurth and Hardegsen Sequences. Uplift prior to the deposition of the Solling Sequence caused deep erosion on the swells in the basin and minor erosion in the lows. The high-resolution sequences probably represent alternating, relatively wet and dry climatic periods, with a periodicity of about 100 000 years. An analysis of the sequences suggests that their reduced thickness on the swells is mainly the effect of erosion. This is supported by analyses of the accumulation patterns and rates.  相似文献   

6.
Kuh-e Mond Field is a conventional heavy oil resource in the Zagros foreland Basin, Iran, produced from the fractured carbonates partially filled by dolomite, calcite, and anhydrite cement. Vitrinite reflectance data from carbonate reservoir suggest low-maturation levels corresponding to paleotemperatures as low as 50 °C. The observed maturation level (< 0.5% Rmax) does not exceed values for simple burial maturation based on the estimated burial history. Oil inclusions within fracture-filled calcite and dolomite cement indicate the key role of these fractures in oil migration.The fluid inclusion temperature profiles constructed from the available data revealed the occurrence of petroleum in dolomite, calcite, and anhydrite and characterize the distinct variations in the homogenization temperatures (Th). Fluid inclusions in syntectonic calcite veins homogenize between 22 °C and 90 °C, showing a salinity decrease from 22 to 18 eq. wt.% NaCl. Fluid inclusions in anhydrite homogenize at < 50 °C, showing that the pore fluids became warmer and more saline during burial. The Th range in the calcite-dolomite cement depicts a change in water composition; therefore, we infer these cements precipitated from petroleum-derived fluids. The microthermometry data on the petroleum fluid inclusions suggest that the reservoir was filled with heavy black oils and high-salinity waters and indicate that undersaturated oil was present in a hydrostatically pressured reservoir.The Th data do not support vertical migration of hot fluids througout the section, but extensive lateral fluid migration, most likely, drove tectonically dewatering in the south or west of the pool.  相似文献   

7.
The study of ammonites from the upper part of the upper Bajocian and lower part of the lower Bathonian in the sections of the basin of the Bolshoi Zelenchuk (Karachay-Cherkessia) allowed the recognition of Beds with Parkinsonia djanelidzei (approximate equivalent of the middle part of the Parkinsonia parkinsoni Chronozone) and Beds with Oraniceras scythicum (lower part of the Zigzagiceras zigzag Chronozone). The taxonomic composition and distribution of foraminifers, ostracodes, dinoflagellate cysts, and miospores were studied in the samples from these deposits (upper part of the upper member of Djangura Formation). The recognized characteristic assemblages of microfauna and palynomorphs allowed ostracode and dinocyst subdivisions to be proposed for the Bajocian–Bathonian boundary beds of the Northern Caucasus for the first time. The most important taxa, including ammonites, foraminifers, ostracodes, and dinocysts, are illustrated.  相似文献   

8.
Deposition of organic rich black shales and dark gray argillaceous limestones in the Berriasian–Turonian interval has been documented in many parts of the world. Northwest of Zagros, Iran (Lurestan zone), thin bedded black shales and marls, dark gray argillaceous limestones and fissile limestone layers, having bitumen, of the Garau Formation are deposited. For biostratigraphic studies two stratigraphic sections including one surface section (Kuzaran) and one subsurface section (Naft well) were selected, respectively. In this study, 61 foraminiferal species belonging to 17 genera have been identified, and 12 biozones were recognized. Based on fossils distribution and biozones identification, the age of the Garau Formation is Berriasian?–early Cenomanian. In addition, the micropalaeontological study demonstrated a variety of widespread morphological changes in planktonic foraminifera assemblages (e.g., the elongation of the final chambers, appearance of twin chambers in the last whorl). These changes coincide with deposition of argillaceous limestones and marls rich in organic matter, indicating oceanic anoxic events. On this basis, three oceanic anoxic events such as OAE1a, OAE1b and OAE1d were recognized in Naft well section and two (OAE1b and OAE1d) in Kuzaran section.  相似文献   

9.
10.
Global, glacio-eustatic sea-level changes massively influenced the depositional history of the Central Paratethyan region. Here, we correlate Middle Miocene global δ18O-shifts with ice volume changes on Antarctica and sea-level changes with corresponding phases of erosion (valley incision) and deposition in the Lower Austrian part of the Alpine–Carpathian Foredeep. This allows the exact dating of the valley formation. Two periods of positive δ18O-shifts resulted in sea-level drops of about 60 and 40 m, respectively. The first drop in the late Langhian (middle Badenian) at c. 13.9 Ma (Mi3b) was fast and caused severe erosion on the emerged foredeep. In a second, less pronounced step around 13.0 Ma (Mi4) in the middle Serravallian (late Badenian), the base level was further deepened after a period of alternating erosion and deposition. The combined sea-level change (80–120 m) fits well with the maximum thickness of Sarmatian sediments drilled within incised valley (110 m). The global sea-level falls affected not only the geological history of the foredeep. The intensive erosion (valley incision) is combined with delta progradation in the adjacent Vienna Basin. Due to this massive sea-level drop, the interruption of marine connections resulted in vast salt deposits and faunal crises within the Central Paratethys during this time.  相似文献   

11.
The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj–Sirjan zone. Precise U–Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.  相似文献   

12.
The Gurpi Formation in the southwest of Iran has been studied for microfacies and bulk organic geochemistry in order to elucidate its depositional environment and petroleum source rock characteristics. The obtained results ended up with four types of organic facies and three types of microfacies through the formation. Three microfacies types differentiated including Pelagic mudstone Wackstone, microbioclast Packstone and bioclastic Packstone reflect a distal outer ramp or basinal environment. Combination of palynofacies and organic geochemistry resulted in differentiation of four organic facies corresponding to organic facies B, BC, C and CD of Jones 1987. Detailed organic facies shows that the formation is characterized by low values of TOC, high percentages of amorphous organic matter and black phytoclasts, rare marine algae thereby representing a mixture of terrestrial and marine kerogen that confirm the formation was deposited in a distal anoxic to oxic condition. The formation shallows upward to the Microbioclast Packstone facies below the Lopha Member reaching its minimum depth in boundstones of this member in uppermost Campanian and then is followed by stagnant condition and high contents of organic matter in suboxic to anoxic condition that favoured accumulation of organic matter in early Maastrichtian. Organic geochemical and petrographical data indicate that the formation is not potentially suitable for petroleum production except for the minor interval (organic facies 2) in early Maastrichtian. Tmax values vary between 340 and 440 °C confirming immaturity trends indicated by Rock-Eval data.  相似文献   

13.
New data on the stratigraphy and lithology of the Lower–Middle Devonian rocks at junction of the Volga–Ural anteclise, Ural foredeep, and North Caspian basin are reported. Facies maps are also presented for the Takatinian, Koiva–Vyazov, Eifelian, and Givetian stages of the region evolution. The paleogeographic evolution and structural zonation of the basin in the Early–Middle Devonian are discussed. The evolution of carbonate buildups (Akbulak and Saraktash) in connection with their possible petroleum potential is examined.  相似文献   

14.
15.
16.
The south Ardestan plutonic rocks constitute major outcrops in the central part of Iran’s Cenozoic magmatic belt and encompass a wide compositional spectrum from gabbro to granodiorite. U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating of zircon three granodiorites yielded ages of 24.6 ± 0.1, 24.6 ± 0.1, and 24.5 ± 0.1 Ma. For tonalitic rocks, internal Rb–Sr isochron ages (biotite, feldspars) indicate cooling ages of 20.4 ± 0.1, 20.5 ± 0.1, and 22.3 ± 0.1 Ma, which are slightly younger than the zircons’ ages. The limited variations in their Sr–Nd isotope ratios indicate derivation from an asthenospheric mantle source. A geodynamic model is presented in which late Oligocene–Miocene rollback of the Neotethyan subducting slab triggered asthenospheric upwelling and partial melting in the south Ardestan. These melts were subsequently modified through fractional crystallization and minor crustal contamination en-route to the surface. Plagioclase + orthopyroxene-dominated fractional crystallization accounts for differentiation of gabbro to gabbroic diorite, whereas fractionation of clinopyroxene, titanomagnetite, and orthopyroxene led to differentiation of gabbroic diorite to diorite. Amphibole fractionation at deeper levels led to the development of tonalites.  相似文献   

17.
Epithermal deposits with bonanza Au–Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au–Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal–colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with heated meteoric water to create precious metal ore-forming fluids. Colloidal nanoparticles of Au–Ag alloy (electrum), naumannite (Ag2Se), silica, and adularia, likely nucleated at depth, traveled upward, and deposited where they grew large enough to aggregate along vein walls. Silica and gold colloids have been reported in hot springs from Yellowstone National Park, suggesting that such processes may continue to some extent to the present. However, it is possible that the initial development of the mantle plume led to a major but short-lived “distillation” process which led to the mid-Miocene bonanza ore-forming event.
J. A. SaundersEmail:
  相似文献   

18.
The Barents Sea shelf is an attractive target as a prospective large petroleum province. Further development of geological and geophysical exploration in the area requires high-resolution biostratigraphic constraints and update stratigraphic charts. The zonal succession of Lower and Middle Jurassic assemblages of foraminifers and ostracodes of the Barents Sea fits well the division for northern Siberia based on correlated independent Jurassic and Cretaceous zonal scales on all main microfossil groups, of which some scales were suggested as the Boreal Zonal Standard. The stratigraphic range of the Barents Sea microfossil assemblages has been updated through correlation with their counterparts from northern Siberia constrained by ammonite and bivalve data. Joint analysis of foraminiferal and ostracode biostratigraphy and lithostratigraphy of the sections allowed a revision to the stratigraphic position and extent of lithological and seismic units. The discovered similarity in the Lower and Middle Jurassic lithostratigraphy in the sections of the Barents Sea shelf and northern Siberia, along with their almost identical microfossil taxonomy, prompts similarity in the Early and Middle Jurassic deposition and geological histories of the two areas.  相似文献   

19.
20.
《International Geology Review》2012,54(10):1234-1252
ABSTRACT

The lower Miocene (~22–19 Ma) volcanic units in the NE–SW-trending Tunçbilek–Domaniç basin, located in the northeastern-most part of the Neogene successions in western Anatolia, are composed of (1) high-K, calc-alkaline dacitic to rhyolitic volcanic rocks of the Oklukda?? volcanics; (2) calc-alkaline low-MgO (evolved) basalts; and (3) high-MgO mildly alkaline basalts of the Karaköy volcanics. Sr isotopic ratios of the volcanic units increase from high-MgO (~0.7055–0.7057) to low-MgO basaltic rocks (~0.7066–0.7072) and then to dacitic-rhyolitic rocks (0.7081–0.7086). Geochemical features of the volcanic rocks reveal that the calc-alkaline evolved basalts were formed by mixing of basic and acidic magmas.

Geochemical studies in the last decade show that the Miocene mafic volcanic rocks in western Anatolia are mainly composed of high-MgO shoshonitic-ultrapotassic rocks (SHO-UK), of which mantle sources were variably, but also intensely metasomatized with crustally derived materials during collisional processes in the region. However, geochemical comparison of the high-MgO basalts of the Karaköy volcanics with the SHO-UK rocks in this region reveal that that the former has too low 87Sr/86Sr(i) and high 143Nd/144Nd(i) ratios, with lower LILE and LREE abundances, which are firstly described here. These features are interpreted to be derived from more slightly enriched lithospheric mantle sources than that of the SHO-UK. Accepting the SHO-UK rocks in the region were derived from mantle sources that had been metasomatized by northward subduction of crustal slices during Alpine collisional processes, it is proposed that the imbrication and direct subduction of crustal slices were not reached to, and were limited in the mantle domains beneath the basin. The dacites of the Oklukda?? volcanics might be formed either by high-degree melting of the same sources with the SHO-UK, or by melting of the lower crustal mafic sources as previously proposed, and then evolved into the rhyolites via fractional crystallization with limited crustal contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号