首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

2.
Street dust is one of the important indicators that reflect the status of urban environmental pollution. There are many studies of heavy metals contamination of street dust in capital cities; however, little attention has been paid to this kind of study in medium cities, including China. The dust samples were collected in the district of traffic crossroads in Xianyang city, Shaanxi Province. Pb, Cd, Cu, Ni, Zn, Cr and Mn concentrations were determined using atomic absorption spectrometry (AAS). The results indicate that the concentrations of heavy metals are higher than the background values of soils in Shaanxi Province. The contamination level of heavy metals is assessed by potential ecological risk index (E r), geoaccumulation index (I geo), enrichment factor (EF) and pollution index (Pi). The low I geo, EF, E r, Pi and PIn (integrated pollution index) for Mn in street dusts indicate an absence of distinct Mn pollution. The high EF, Pi and PIn of Cu and Zn indicate that there is considerable Cu and Zn pollution. It is suggested that more attention should be paid to heavy metals contamination of Cu and Zn. The assessment results of Pi and PIn suggest that Pb, Ni and Cr present strong pollution; however, their EFs indicate that they cause moderate pollution and their I geo indicates that they are unpolluted to moderately polluted. The contamination class value with different assessing methods is of the order: Pi ≈ PIn > EF > I geo > E r.  相似文献   

3.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

4.
Lerma River is one of the largest rivers in Mexico. Over the past 20 years, unplanned population growth occurred along its course and the river has been used as the only outlet for industrial and domestic wastewater disposal. The aim of the present study was to determine trace metals such as Cr, Ni, Cu, Zn, Fe, Pb, and arsenic concentrations at the upper layer of sediments of the Lerma River meander in La Piedad, Michoacan, Mexico. Sediment samples were collected from eight different sites during the rainy and dry seasons. All samples were physically characterized, and concentration values of trace metals and As were determined. On the basis of protection criteria for freshwater sediments, concentrations of Fe, Zn, Cu, Ni, and Pb were found to exceed the lowest effect level; moreover, the concentrations were found to exceed the severe effect level at some sites, particularly for Cu. Statistical analyses showed significant differences between sampling seasons for Fe and As, and among sites for Ni, Cu, Zn, and Pb. In addition, the enrichment factor indicates the following order Zn > Cr > Cu > Ni > Pb > As, and the geoaccumulation index (I geo) indicates contamination in the following order Zn > Cr > Cu > Ni > As > Pb. The Lerma River meander in La Piedad shows a reduction in pollution by trace metals and arsenic near the drain area and downstream of the meander. However, there are significantly higher concentrations of these elements in sediments of sites located in the middle part of the city.  相似文献   

5.
Due to the intensified industrial activities and excessive application of agrochemicals and organic waste materials over the last few decades, there is a great concern about the accumulation of potentially toxic elements (PTEs) in soils from north of Khuzestan Province, southwestern Iran. Therefore, a comparative study with a total number of 300 composite soil samples (0–10 cm) from industrial, urban, agricultural, forest, and rangelands; and 26 samples from the major types of soils parent materials was conducted to examine sources, pollution status, and the effects of soil properties, land use types, and the local lithology on the total concentrations of As, Pb, and Cu (measured using atomic absorption spectrometer (AAS) equipped with graphite furnace) in the soils studied. The mean values of Pb and Cu were 12.2?±?4.6 and 13.5?±?7.6 mg kg?1, respectively, slightly higher than the background values of the study area, but lower than the guideline values of Iranian Environmental Quality Standard for Soils. However, the mean values of As (1.72?±?1.15 mg kg?1) were lower than both background values and the guideline values of Iranian Environmental Quality Standard for soils. The greatest values of the geo-accumulation index (I geo), enrichment factor (EF), and the concentrations of Pb, Cu, and As were arranged as industrial > urban > agriculture > rangelands = forest land uses. The results also indicated that concentrations of all PTEs were greater in soils as compared to those in parent materials. Using principal component analysis (PCA), the origin of Cu and Pb with moderate to high enrichments was attributed to the inputs from both natural and anthropogenic sources. However, As was found to be mainly influenced by lithogenic origin.  相似文献   

6.
Trace metals were analyzed in water and sediment samples from Barapukuria coal mine area of Bangladesh in order to evaluate their mobility and possible environment consequences. Cadmium is the most mobile element with an average partition coefficient (log K d ) of 2.95 L/kg, while V is the least mobile element with a mean log K d of 5.50 L/kg, and their order of increasing mobility is: V < As < Pb < Fe < Cr < Se < Mn < Ni < Zn < Cu < Ba < Sr < Cd. Contents of organic carbon in sediment samples shows strong positive correlations with most trace metals as revealed by the multivariate geostatistical analysis. The overall variation in concentration is mainly attributed to the discharge of effluents originating from the coal mining activities around the study area. Compared to their background, Ni and Cu are the most enriched while significant enrichment of As, Mn, Ba, Sr, Cr, and Pb is also observed in the sediments. Geoaccumulation indices (I geo ) suggest sediments are moderately to heavily polluted with respect to Ni and Cu. The metal pollution index (MPI) varied from 91.91 to 212.01 and the highest value is found at site CM03 that is close to discharge point. The sediment quality guideline index (SQG-I Intervention ) values (0.56–1.52) suggest that the sediments at the study area have moderate to high ecotoxicological risk.  相似文献   

7.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

8.
近50年来抚仙湖重金属污染的沉积记录*   总被引:15,自引:8,他引:15  
文章以抚仙湖污染严重的北部和基本未受人类活动影响的中部为研究对象,分别采集了沉积岩芯FB和FZ,通过对岩芯的137 Cs测年和重金属元素(Cu,Ni,Ti,Cr,V,Pb,Cd和Zn)的含量分析,研究了湖泊重金属来源和污染历史,并利用地质累积指数法评价了湖泊重金属污染程度。结果表明:抚仙湖北部的平均沉积速率约为2.0~2.8mm/a;20世纪80年代以前,湖泊北部和中部的重金属元素(Cu,Ni,Ti,V,Pb,Cd,Zn)以自然来源为主;80年代以后,抚仙湖受到人类活动的影响,但湖泊中部Cu,Ni,Ti,V,Pb,Zn以及湖泊北部Cu,Ni,Ti,V仍以自然来源为主;湖泊北部Pb和Zn地质累积指数值小于1,属无污染到中度污染;北部Cd地质累积指数为3~4,达强度污染;中部Cd地质累积指数为2~3,属中强度污染;且Pb,Zn和Cd污染程度有加速增大的趋势。  相似文献   

9.
We present multi-element concentrations in the surface sediments from the offshore of Cauvery delta of southeast India to evaluate the impact of coastal pollution on the geochemical behaviour of surface deposits. For this study, 16 surface sediment samples were collected from the offshore of Cauvery delta of southeast India and were analysed using traditional XRF for various major (SiO2, Al2O3, MgO, Fe2O3, MnO, Na2O, K2O, CaO, P2O5, TiO2) and trace elements (Rb, Sr, Ba, Y, Zr, Nb, V, Cr, Co, Ni, Cu, Zn, Th, Pb) after powdering it to ASTM 230 (<63 μm). The main objectives of this study were to understand the geochemical behaviour of the coastal surface sediments and its performance and relation with the pollution indices and statistical analysis. To meet out the objective, pollution indices such as enrichment factor (EF), contamination factor (CF) and Geoaccumulation Index (I geo) were calculated and statistical analyses were performed to understand the relationship between the geochemical parameters. Both EF and I geo show the enrichment of Cu, Cr and Zr, whereas CF shows enrichment of Cu and Cr. Statistical analyses exhibit poor correlation between these elements and fine fraction indicating the insignificant role played by both grain size and organic matter. Strong positive association between Cu and Zn with CaCO3 exhibits the role of carbonates in precipitating these metals from the overlying water column possibly related to agricultural pollution. Distribution and association of other elements suggest the influence of mineralogy in geochemical composition of surface sediments. Based on this study, we suggest that environmental indices alone should not be considered for evaluating environmental conditions and a prior geogenic characterisation of the sediments is necessary.  相似文献   

10.
This research presents a detailed study which was performed to infer the quantity of metal (Cd, Cr, Pb, Zn, Cu and Fe) contents in sediments of Daye Lake, Central China. The geo-accumulation (I geo) and potential ecological risk (PER) of these metals were assessed. The results reveal that: (1) the mean value of I geo ranked an order of Fe (class 6) > Cd (class 5) > Pb (class 3) > Zn (class 2) > Cr (Class 1) > Cu (Class 0); (2) Potential ecological risk (PER) values calculated for all these metals at different sampled points in Daye Lake exceeded the value of very high risk. Multivariate statistical analyses were carried out to determine the relationship between these six metals and to identify the possible pollution sources, with the results suggesting that the metal content in the sediments has three patterns: the first pattern includes Pb, Cd and Cr which were mainly present due to discharged water by smelting industries; second pattern contains Zn and Cu which mainly originated from the waste residue of the copper mining industry; the third pattern is Fe which is mainly related to mine tailing leaches. This study indicates very high metal content levels in the sediments, which may have adverse risks (average PER = 7,771.62) for the lake’s ecosystem and human beings associated with Daye Lake.  相似文献   

11.
The total concentrations of Cd, As, Pb, Cr, Ni, Co, Zn, Cu, Ag, Hg, and Mo were determined in the atmospheric dust of the city of Yerevan by atomic absorption spectrometry (AAnalyst PE 800). Heavy metal pollution levels were evaluated by calculating geo-accumulation (I geo ) and summary pollution (Zc) indices. Potential human health risk was assessed using the United States Environmental Protection agency’s human health risk assessment model. The results show that mean contents of all elements tested except Ni and Cr were substantially higher than local geochemical background values. According to the I geo , Yerevan territory is strongly-to-extremely polluted by As, Ag, Hg, Mo, and Cd. The Zc assessment indicated that very high pollution was detected in 36 % of samples, high in 32 %, average in 12 %, and low in 20 %. The health risk assessment revealed a non-carcinogenic risk (HI >1) for children at 13 samplings sites and for adults at one sampling site. For children the risk was due to elevated levels of Mo, Cd, Co, and As, while for adults, only Mo. Carcinogenic risk (>1:1,000,000) of As and Cr via ingestion pathway was observed in 25 and 14 samples, respectively. This study, therefore, is the base for further detailed investigations to organize problematic site remediation and risk reduction measures.  相似文献   

12.
In China, soil pollution is very serious, which has jeopardized the ecology, food safety, the people's health, and even the sustainable development of agriculture. In order to investigate the soil pollution situation, a total of 874 agricultural and non-agricultural topsoil samples were collected from Dexing area, northeast of Jiangxi Province, China. The total elemental concentrations of 17 elements (As, Hg, Mo, Cd, Cr, Zn, Cu, Mn, Ti, Pb, Fe, Ca, K, Si, Al, Mg, and Na) were determined. The geochemical background and threshold was predicted with the method of the median ± median absolute deviation (MAD). The agricultural soil median concentration of trace elements was similar to that of the non-agricultural soil. In contrast to Jiangxi soil background of trace elements, the geochemical background of the study area was obviously higher. The maps of the pollution indices for As, Cd, Cr, Cu, Hg, Mn, Mo, Pb, Ti and Zn of non-agricultural soil and agricultural soils in the study area, showed that the highest level of pollution is distributed near and along the Lean River, especially in the neighboring and surrounding Dexing and Leping mining area.  相似文献   

13.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

14.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

15.
Socioeconomic developments and industrialization exert tremendous impact on beaches which is often neglected. Heavy metal (Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb) contents were estimated in the intertidal region from Kalpakkam to Mamallapuram (20 km), southeast coast of India covering seven locations. To evaluate the level of contamination of these metals; enrichment factor (EF), geoaccumulation index (I geo), contamination factor (CF), pollution load index (PLI) and modified degree of contamination (mCd) were applied. The results were also compared with the sediment quality guidelines (SQGs) to find out the eco-toxicity level. Metal contents in the beach sediment were observed in the order: Fe > Al > Mn > Cr > Cu > Ni > Zn > Pb > Co > Cd. Grain size distribution showed medium to coarse nature of the sediment. Significant positive correlation was found among the metals indicating their common source of input. Based on EF, minor enrichment of Mn and Zn and moderately severe to severe enrichment of Cr, Cu, Pb and Cd were observed which was further confirmed by I geo and CF values. Moreover, Mamallapuram showed a very high CF value for Cd (>6) indicating very high contamination accountable to anthropogenic sources. PLI and mCd in all the stations indicated unpolluted nature except M1 where the values pointed moderate degree of contamination. As per the SQGs, Ni and Cr values exceeded the probable effect limit value implying that these metals can have adverse impacts. None of the metals exceeded the effect range median indicating that the beach sediment is not very toxic.  相似文献   

16.
Heavy metal pollution in the surficial sediments derived from the estuary in Daliao River and Yingkou Bay is investigated to assess environmental quality, pollution level, bioavailability and toxicity. The ranges of Pb, Co, Zn and Cu concentrations in the surficial sediments are: 16.57–39.18, 3.61–16.02, 16.53–39.18, 2.77–43.80 mg/kg. Results of the geoaccumulation index (I geo) show that the pollution levels of four metals are in the “unpolluted” class except for Pb in 15 sampling sites. The pollution level of the study area assessed by pollution load index (PLI) shows that except for the moderately polluted region of sites 1, 2, 3, 8, 12 and 13, other sites belong to unpolluted state. The sequence of pollution extent of different heavy metals is: Pb > Zn > Co > Cu. At all sampling sites, the grades of potential ecological risk of Co, Cu, Pb and Zn are “light”. The order of potential ecological risk is: Pb > Co > Cu > Zn. Sequential extraction of the metals indicates that the states of Pb, Cu, Co and Zn in the sediment are relatively stable at most sites of the estuary in Daliao River and Yingkou Bay, which means that there is a low source of pollution arriving in this area. While only at several sites, Co, Pb and Zn are labile, which are considered as anthropogenically originated.  相似文献   

17.
The aim of this study was to investigate the influences of land use, parent materials (rock types) and soil properties on total arsenic and cadmium concentrations in the agricultural soils. A total of 87 surface (0–20 cm) soil samples were collected from four types of land use: irrigated farming, rangeland, dry farming and orchard. The average concentrations of the analyzed elements in topsoil were 84.426 mg As/kg and 3.289 mg Cd/kg. In addition, the pH, organic matter (OM), cation exchange capacity (CEC), soil grain sizes and CaCO3 were measured for each sample. The results indicated that land use had no significant effect on As and Cd concentrations. Our findings indicated that the Cd concentrations were influenced by bedrock composition, but for As there were no significant differences between various soil parent materials (bedrocks). Soil pollution was assessed on the basis of pollution index (PI), comprehensive pollution index (P n ) and geoaccumulation index (I geo). Calculated indices showed high-pollution levels for As and low- to moderate-pollution levels for Cd.  相似文献   

18.
In the present study, roadside-deposited sediment samples collected from Kuwait city district, in Kuwait, were analyzed for specific heavy metals (As, Cr, Cu, Mn, Ni, Pb, and Zn). Contamination assessment status of heavy metals in roadside sediments was made using mathematical models in terms of enrichment factor (EF), geoaccumulation index (I geo), and contamination factor (CF). The sediments showed remarkably high levels of all the metals, except Ni, above background concentrations in the following order (As, Cu, Pb, Zn, Mn, and Cr). CF and I geo revealed overall moderately uncontaminated and moderate contamination, respectively, but the EFs for all metals ranged between moderate and significant enrichment.  相似文献   

19.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

20.
The present study to find seasonal (September 2010–June 2011) heavy metal (Cd, Pb, Cr, Co, Ni, Zn, Cu, Fe, As) contamination and the origins thereof in surface sediments of Gökçekaya Dam Lake, as constructed on Sakarya River, the third-longest river in Turkey and the largest river of the Northwestern Anatolia. Upon analyses for the purpose thereof, heavy metal contamination in annual average concentrations in the lake sediment varied, respectively, as Fe > Zn > Cr > Ni > Cu > Pb > Co > As > Cd. Statistical assessments performed in order to see whether the average values of the heavy metal contamination as measured at stations placed in the lake changed by seasonal periods. There found statistically significant differences especially in Cd, Zn, and Pb between seasonal periods. In accordance with the Sediment Quality Index, Gökçekaya Dam Lake sediment was classified as “highly polluted” in terms of the amount of anthropogenic contaminants of As, Cr, Cu, Ni, Pb, and Zn. Enrichment factor and geoaccumulation index values (I geo) were calculated in order to geochemically interpret the source of contamination due to heavy metal concentration in the lake sediment and the level of pollution. The As, Co, Cr, Cu, Ni Pb, and Zn values demonstrated that the sediment was rich for anthropogenic contaminants. The lake was found especially rich for arsenic (14.97–34.70 mg/kg) and lead (68.75–98.65 mg/kg) in accordance with annual average values. In general the lake was geochemically characterized as “moderately contaminated” in terms of As, Co, Cr, Cu, Ni, Pb, and Zn content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号