首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
对南海34个站位表层沉积中的钙质超微化石进行了氧碳稳定同位素分析.结果表明,钙质超微化石δ^18O化范围为-2.656‰~0.006‰,平均为-1.517‰;δ13C值变化范围为-1.510‰~0.778‰,平均为0.140‰.通过与有孔虫同位素分析结果相比较,发现钙质超微化石δ^18O高于浮游有孔虫而低于底栖有孔虫,δ13C值低于浮游有孔虫而高于底栖有孔虫.从平面分布来看,南海表层沉积钙质超微化石氧同位素在东北和西南各存在一个小于-1.5‰的低值区,碳同位素在东北存在一个小于0的低值区.钙质超微化石与有孔虫同位素值的差异性可能与其生命效应及生活环境有关.而钙质超微化石与有孔虫同位素平面分布规律上的不同也揭示了海水温度、盐度、营养水平等海洋参数可能对超微化石和有孔虫同位素的分馏起不同控制作用.  相似文献   

2.
本文对西太平洋麦哲伦海山CM3D06富钴结壳进行了钙质超微化石生物地层学研究,发现结壳中有代表白垩纪(晚期)、古新世(晚期)、始新世(早、中、晚期)、中新世(中期)、上新世(晚期)和更新世等各时代的标准钙质超微化石,表明结壳的形成始于白垩纪(晚期);在富钴结壳中检出正构烷烃、类异戊二烯烃、甾烷类等众多分子化石,分子化石组合特征指数、主峰碳、ΣC-23/C+24、CPI、Pr/Ph、Pr/nC17、Ph/nC18和nC31/nC17显示有机质生物母源主要为海洋浮游植物、浮游动物和底栖非光合作用的菌类,而甾烷类的C29、C28和C27含量分布的变化则说明生物种群具有快速演变的特征。此外,还探讨了CM3D06结壳中Pr/Ph和有机碳同位素组成变化与结壳生长过程中的海洋环境演化的关联程度。  相似文献   

3.
东海陆架HY126EA1孔有孔虫壳体的氧、碳同位素记录   总被引:4,自引:0,他引:4  
东海陆架HY126EA1孔有孔虫壳体氧同位素组成具有明显的阶段性变化.通过与深海氧同位素组成曲线对比,可将氧同位素组成变化分为5期,分别对应着冰消期、末次冰期极盛期、末次冰期间冰段、末次冰期初期和末次间冰期.碳同位素组成的变化与氧同位素组成的变化基本一致.δ18O和δ13C的相关性在不同气候期存在明显差异,主要受陆源水和海水交换复杂程度的控制.  相似文献   

4.
南海表层沉积物中钙质超微化石分布特征   总被引:9,自引:0,他引:9  
为系统描述钙质超微化石在南海表层沉积中的分布特征,对遍布南海的175个样品进行了实验分析。发现不同地区钙质超微化石绝对丰度相差很大,从0—3.8×1010个.g-1不等。平面上将钙质超微化石丰度分为3个区。共鉴定出钙质超微化石21属28种,以Emiliania huxleyi、Florisphaera profunda和Gephyrocapsa oceanica为优势种,其中Florisphaera profunda占据绝对优势。南海钙质超微化石分布具有两个明显特征:一是14°N线南北两边钙质超微化石的分布存在差异;二是南海钙质超微化石丰度以南沙群岛和西沙群岛两片海域为最高,并有东北-西南走向的分布趋势。对影响钙质超微化石分布的水深、上升流与营养盐、陆源物质稀释作用、碳酸盐溶解作用等因素作了讨论,并根据钙质超微化石随水深的变化推测南海碳酸盐补偿深度应在4 000m左右。  相似文献   

5.
We used the carbon isotope ratios of hydrocarbons and CO2, and the proportions of noble gas isotopes of associated gases from several geological provinces of the Potiguar Basin (Brazil) for gas/source rock correlation, and to determine maturity, post-genetic processes (migration, leakage, biodegradation), and to assess the possible interactions between hydrocarbons and surrounding waters. Barriers of permeability at the basin scale, the amount of water interacting with the accumulated hydrocarbons, proportion of meteoric water, and contamination of the fluids by the mantle were quantified for the distinct petroleum systems defined in this basin.  相似文献   

6.
The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (δ18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compounds are converted to orthophosphate (PO43−). To determine the extent of incorporation of reagent oxygen into the sample, we digested various phosphatic compounds in both acid amended with H218O (spiked) and unspiked acid and then converted the samples to silver phosphate for δ18Op analysis. Our results indicate that there is no isotopic fractionation associated with acid digestion at 50 °C. Furthermore, we found that reagent oxygen incorporation is a function of the oxygen to phosphorus ratio (O:P) of the digested compound whereby the percentage of reagent oxygen incorporated into the sample is the same as that which is required to convert all of the P-compounds into orthophosphate. Based on these results, we developed a correction for reagent oxygen incorporation using simple mass balance, a procedure that allows for the determination of the δ18Op of samples containing a mixture of phosphatic compounds. We analyzed a variety of environmental samples for δ18Op to demonstrate the utility of this approach for understanding sources and cycling of P.  相似文献   

7.
An improved method for the direct determination of organic carbon in calcareous marine sediments, organisms and particulate matter is described. Samples are dissolved in phosphoric acid to remove carbonates, purged with oxygen to remove CO2, and the resulting acidic solution is analysed for total (dissolved and particulate) organic carbon. The method is rapid, involves minimal sample manipulation, and is both accurate (better than ± 2%) and precise (better than ± 0.2 mg organic carbon/g sediment). The method is especially suitable for modern carbonate sediments which have low levels of predominantly acid-soluble organic carbon.  相似文献   

8.
Spatial distribution of the carbon and nitrogen content and their isotopic enrichment in suspended matter and sediments were measured in the Godavari estuary to identify the sources and transformation mechanism of organic matter. Significant variability in isotopic distribution was found over the entire length of the Godavari estuary, suggesting multiple sources of organic matter. The mean isotopic ratios (δ13Csed −25.1 ± 0.9, δ13Csus −24.9 ± 1, δ15Nsed 8.0 ± 2 and δ15Nsus 6.5 ± 0.9‰) and elemental concentrations (Csed 0.45 ± 0.2%, Csus 0.9 ± 0.7%, Nsed 0.07 ± 0.05% and Nsus 0.16 ± 0.1%) support a predominantly terrigenous source. Significant enrichment in the isotopic ratios of δ13C from the upper to lower estuary in both suspended (−27.5 and −24.3‰, respectively) and sedimentary (−26.2 and −24.9‰, respectively) phases indicates a decrease in the influence of terrigeneous material toward the mouth of the estuary. A significant positive relationship exists between the δ13C of suspended and sediment, which indicates that these two organic carbon pools are likely coupled in the form of a significant exchange between the two phases. A positive relationship exists between chlorophyll a and suspended organic matter, which may mean that a significant source of organic carbon is the in situ produced phytoplankton. But, applying a simple mixing model to our isotopes, data yielded about 46% as the contribution of the terrestrial source to suspended matter, which may support the excessive heterotrophic activity in the Godavari estuary reported earlier.  相似文献   

9.
The relationship between particulate organic carbon (POC) concentrations measured in modern sediment and fluxes of exported POC to the sediment surface needs to be understood in order to use POC content as a proxy of paleo-environmental conditions. The objective of our study was to compare POC concentrations, POC mineralization rates calculated from O2 consumption and POC burial rates. Benthic O2 distributions were determined in 58 fine-grained sediment cores collected at different periods at 14 stations in the southeastern part of the Bay of Biscay with depths ranging from 140 to 2800 m. Depth-dependent volume-specific oxygen consumption rates were used to assess rates of aerobic oxidation of organic matter (OM), assuming that O2 consumption solely was related to heterotrophic activity at the sediment–water interface. Heterogeneity of benthic O2 fluxes denoted changes in time and space of fresh organic material sedimentation. The most labile fraction of exported POC engendered a steep decrease in concentration in the upper 5 mm of vertical O2 profiles. The rupture in the gradient of O2 microprofile may be related to the bioturbation-induced mixing depth of fast-decaying carbon. Average diffusive O2 fluxes showed that this fast-decaying OM flux was much higher than buried POC, although diffusive O2 fluxes underestimated the total sediment oxygen demand, and thus the fast-decaying OM flux to the sediment surface. Sedimentary POC burial was calculated from sediment mass accumulation rate and the organic carbon content measured at the top of the sediment. The proportion of buried POC relative to total exported POC ranged at the most between 50% and 10%, depending on station location. Therefore, for a narrow geographic area like the Bay of Biscay, burial efficiency of POC was variable. A fraction of buried POC consisted of slow-decaying OM that was mineralized within the upper decimetres of sediment through oxic and anoxic processes. This fraction was deduced from the decrease with depth in POC concentration. At sites located below 500 m water depth, where the fast-decaying carbon did not reach the anoxic sediment, the slow-decaying pool may control the O2 penetration depth. Only refractory organic material was fossilized in sedimentary records at locations where labile OM did not reach the anoxic portion of the sediment.  相似文献   

10.
A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux (49.2 g m-2), among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low δ13C values of settling particles result from effects on C-fixation processes at low temperature and the high CO2 availability to phytoplankton. The correspondingly low δ15N values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The δ15N and δ13C values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous δ15N values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing δ13C values towards the unproductive period through the biomodification of the δ13C values in the food web, respiring preferentially and selectively12C atoms. Correspondingly, the increasing δ15N values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high δ15N values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.  相似文献   

11.
Incorporation of 14C-depleted (old) dissolved organic carbon (DOC) on/into particulate organic carbon (POC) has been suggested as a possible mechanism to explain the low Δ14C-POC values observed in the deep ocean [Druffel, E.R.M., Williams, P.M., 1990. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347, 172–174.]. A shipboard incubation experiment was performed in the Sargasso Sea to test this hypothesis. Finely ground dried plankton was incubated in seawater samples from the deep Sargasso Sea, both with and without a biological poison (HgCl2). Changes in parameters such as biochemical composition and carbon isotopic signatures of bulk POC and its organic compound classes were examined to study the roles of sorptive processes and biotic activity on POC character. Following a 13-day incubation, the relative abundance of the acid-insoluble organic fraction increased. Abundances of extractable lipids and total hydrolyzable amino acids decreased for both treatments, but by a greater extent in the non-poisoned treatment. The Δ14C values of POC recovered from the non-poisoned treatment were significantly lower than the value of the unaltered plankton material used for the incubation, indicating incorporation of 14C-depleted carbon, most likely DOC. The old carbon was present only in the lipid and acid-insoluble fractions. These results are consistent with previous findings of old carbon dominating the same organic fractions of sinking POC from the deep Northeast Pacific [Hwang, J., Druffel, E.R.M., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science, 299, 881–884.]. However, the Δ14C values of POC recovered from the poisoned treatment did not change as much as those from the non-poisoned treatment suggesting that biological processes were involved in the incorporation of DOC on/into POC.  相似文献   

12.
Mangroves are highly productive ecosystems that exhibit a diverse range of habitats, including tidal creeks and flats, forest gaps and interior forest with varying understory light intensity, tidal dynamics, geomorphological settings, and overall biological production. Within mangrove ecosystems, invertebrates and fish feed on heterogeneous food sources, the occurrence of which is unevenly distributed across the system. This provides a basis for testing models of carbon transfer across mangrove ecosystems. We hypothesized that the carbon transfer and assimilation by fish and invertebrates will vary across the different mangrove habitats and that such variations can be predicted by their stable isotope compositions. We analysed δ13C and δ15N signatures of consumers and their potential organic carbon sources across a tropical mangrove ecosystem in Vietnam. The δ13C values of crabs and snails significantly decreased from the tidal flat to interior forest, indicating that variations in carbon transfer and assimilation occurred at small scales <30 m. Reduced variation in δ13C of suspension‐feeding bivalves suggested that tidal water was a vector for large‐scale transport of carbon across the mangrove ecosystem. An analysis of co‐variance using habitat as a fixed factor and feeding habit and movement capacity of consumers as co‐variates indicated that habitat and feeding types were major features that affected the δ13C values of invertebrates and fish. The findings demonstrate that carbon transfer and assimilation across mangrove ecosystems occur as a diverse combination of small (<30 m) and large (>30 m) scale processes.  相似文献   

13.
The stable isotopic composition(δ~(13)C and δ~(15)N) and carbon/nitrogen ratio(C/N) of particulate organic matter(POM) in the Chukchi and East Siberian shelves from July to September, 2016 were measured to evaluate the spatial variability and origin of POM. The δ~(13)C_(POC) values were in the range of -29.5‰ to-17.5‰ with an average of -25.9‰±2.0‰, and the δ~(15)N_(PN) values ranged from 3.9‰ to 13.1‰ with an average of 8.0‰±1.6‰. The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf, while the δ~(13)C and δ~(15)N values were just the opposite. Abnormally low C/N ratios(4), low δ~(13)C_(POC)(almost-28‰) and high δ~(15)N_(PN)(10‰) values were observed in the Wrangel Island polynya, which was attributed to the early bloom of small phytoplankton. The contributions of terrestrial POM, bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model. The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward, indicating the influence of Russian rivers. The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward, suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf. The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery. A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed, indicating that the net sea ice loss promotes early bloom in the polynya.Given the high fraction of bloom-produced POM, the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号