首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lower tectonic unit of Ios provides evidence of an at least four stage metamorphic and intrusive history which well might be generalized for large parts of the internal Pelagonian.Metamorphic country rocks of unknown age were intruded about 500 Ma ago, as concluded from a Rb-Sr whole rock (WR) isochron on relic tonalites to granodiorites which largely escaped the polyphase postmagmatic overprints.A Hercynian amphibolite facies metamorphism, during which the igneous rocks were partly recrystallized to orthogneisses, is dated by a lower intercept age of 300–305 Ma of U-Pb determinations on zircons and by three almost concordant Rb-Sr muscovite-WR ages of 295 to 288 Ma.K-Ar analyses on these muscovites and on biotites, and Rb-Sr tie lines WR-biotite and WR with other relic magmatic minerals yielded various apparent ages between 260 and 60 Ma. They are interpreted as mixed ages between a Hercynian cooling age and the two stage Alpidic overprints.White micas formed during the Eocene high P/T and/or Oligocene/Miocene Barrovian-type overprints yielded K-Ar dates ranging from 82 to 26 Ma, as well as a single Rb-Sr date of 13 Ma. These Alpidic dates resemble the more detailed age patterns of other Cycladic islands. But they are not sufficient for an independent dating of the Tertiary evolution on Ios island.  相似文献   

2.
The Rb-Sr composition of eight melt rock and three basement samples from the East Clearwater impact structure, Quebec, and two basement samples from the West Clearwater structure has been determined. The whole rock 87Sr/86Sr ratios of the melt samples, 0.7167–0.7253, are within the range of the basement samples, 0.7054–0.7322, and provide further evidence that the melt rocks represent shock-melted basement. A mineral isochron obtained from a relatively coarse grained melt rock gives an age of 287±26 Ma for the crystallization age of the melt. This is equivalent to K-Ar whole-rock ages of 285±30 Ma and 300±30 Ma and a Rb-Sr age of 266±15 Ma obtained on melt rocks from West Clearwater and confirms the previously generally held assumption that the East and West Clearwater structures resulted from the simultaneous impact of two bodies at 285–300 Ma ago.Contribution from the Earth Physics Branch No. 909  相似文献   

3.
A Rb-Sr analysis of suites of samples from a small intrusion of cordierite-bearing alkali granite into the peridotite of the Sierra Bermeja (Serrania de Ronda) yields an age of 22± 4 Ma ( = 1.42×10–11 a–1): Late Oligocene/Early Miocene. It is believed that the intrusion was derived from contact-anatectic melts produced along the hot ultramafic mass during and/or directly following its tangential, tectonic dislocation from a mantle diapir. Its age can thus be taken as dating the termination of the hot emplacement of the ultramafic masses. K-Ar dates of biotites and Rb-Sr dates of biotite/whole-rock pairs in contact-metamorphic wall rocks along the ultramafics mostly lie between 19.5 and 18.5 Ma. This probably indicates that about 19 Ma ago the contact-zones of the ultramafic masses had cooled down to the blocking temperature of biotite to Rb-Sr and K-Ar.  相似文献   

4.
华南某些含钨花岗岩的K-Ar年龄   总被引:3,自引:0,他引:3       下载免费PDF全文
测定了华南某些与钨矿床有关的花岗岩和钨矿脉样品的K—Ar年龄,共37件。这些花岗岩的表观年龄自183Ma至99.5Ma(年龄值为715Ma的岩体与钨矿无关),其中68%以上样品值域在150Ma左右。~(40)Ar/~(36)Ar—40K/~(36)Ar等时线图解给出的等时年龄为132.1Ma,说明这些花岗岩在形成时代上属中侏罗到早白垩世。我们发现在华南钨矿成矿域内,有一个从中心带向外年龄逐渐变青的趋势。用矿脉中和矿脉侧云英岩中云母类矿物所做的K—Ar定年得到的矿化作用的年龄,与各自相关的花岗岩的年龄非常接近,以至于很难用K—Ar定年法加以区别。即成矿作用和成岩作用有一种准同期性。等时线对应的~(40)Ar/~(36)Ar初始比高于现今大气Ar的比值,表明花岗岩在固结时有继承Ar存在。  相似文献   

5.
The results of 63 new radiometric K-Ar and Rb-Sr measurements on metamorphic minerals from the internal units of the Western Alps show Hercynian, Permian, as well as three Alpine age groups. The first of the Alpine ages cover the period between 78 and 100 m.y. and refer to high pressure parageneses. The second group comprises K-Ar 39 to 50 m.y. ages; these values are affected by some inherited argon, as indicated by Rb-Sr measurements which point to 35–36±4–5 m.y., i.e. similar to the culmination of the Lepontine crystallization. The final group includes 15 to 30 m.y. ages. It is not yet clear which geologic processes have led to this isotope re-equilibration. Large amounts of inherited argon have been found in Alpine metamorphic minerals of the basement rocks.  相似文献   

6.
In the Saxothuringian part of the Vosges (France), a first series of Variscan plutonic rocks (diorites to granites) has been intruded by several younger granites. Rocks of both the older generations have been cross-cut by the late orogenic Kagenfels granite. The averages of the hitherto published mineral ages of the earlier rock generations are 331 and 334 Ma, respectively, whereas Rb-Sr and K-Ar dates around 290 Ma have been reported for the Kagenfels granite. Because of the unlikely large age hiatus, a redetermination of the intrusion age of the Kagenfels granite formation appeared to be irrevocable. The newly obtained mineral ages on the Kagenfels granite (K-Ar and 40Ar/39Ar biotite ages as well as single zircon radiogenic 207Pb/206Pb data: 331 ± 5 Ma) are about 40 Ma older than the previous results. They are interpreted as giving the time of emplacement of the Kagenfels granite during the latest Visan. The mineral ages of the earlier plutonic rocks in this part of the Variscan Orogeny in all probability are not significantly different from their ages of intrusion. Therefore the age concordance of all three granitoid generations constrains a rather narrow time interval of orogenic magmatism close to the Lower-Upper Carboniferous boundary.  相似文献   

7.
The igneous rocks of the Kialineq area on the East Greenland coast at 67 ° N comprise, gabbro, acid-basic breccia and net-vein complexes, syenite and granite and minor volcanics. Rb-Sr whole-rock and mineral isochrons for the epizonal syenites, granites and acid-basic complexes indicate a consanguineous mantle origin at 35±2 m.y. B.P. in agreement with the age obtained by K-Ar dating of biotites and hornblendes. This igneous activity may be associated with major reorganisation of plate geometry in the North Atlantic and Arctic oceans at this time.  相似文献   

8.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

9.
Kinetics of isotopic equilibrium in the mineral radiometric systems of igneous and metamorphic rocks is an important issue in geochronology. It turns out that temperature is the most important factor in dictating isotopic equilibrium or disequilibrium with respect to diffusion mechanism. Contemporaneous occurrence of Mesozoic granites and gneisses in the Dabie orogen of China allows us to evaluate the thermal effect of magma emplacement and associated metamorphism on mineral radiometric systems. Zircon U-Pb, mineral Rb-Sr and O isotope analyses were carried out for a Cretaceous granite and its host gneiss (foliated granite) from North Dabie. Zircon U-Pb dating gave consistently concordant ages of 127 ± 3 Ma and 128 ± 2 Ma for the granite and the gneiss, respectively. A direct correspondence in equilibrium state is observed between the O and Rb-Sr isotope systems of both granitic and gneissic minerals. Mineral O isotope temperatures correlate with O diffusion closure temperatures under conditions of slow cooling, indicating attainment and preservation of O isotope equilibrium in these minerals. The mineral Rb-Sr isochron of granite, constructed by biotite, feldspar, apatite and whole-rock with the O isotope equilibrium, yields a meaningful age of 118 ± 3 Ma, which is in accordance with the mineral Rb-Sr isochron age of 122 ± 1 Ma for the host gneiss. The consistency in both U-Pb and Rb-Sr ages between the granite and the gneiss suggests a contemporaneous process of crystallizing the zircons and resetting the Rb-Sr radiometric systems during magma emplacement and granite foliation. Whereas the zircon U-Pb ages for both granite and gneiss are interpreted as the timing of magma crystallization, the young Rb-Sr isochron ages record the timing of Sr diffusion closure during the slow cooling. Protolith of the gneiss crystallized shortly before intrusion of the granite, so that it was able to be foliated by voluminous emplacement of coeval mafic to felsic magmas derived by anatexis of orogenic lithospheric keel. Therefore, extensional collapse of collision-thickened crust at Early Cretaceous is suggested to trigger the post-collisional magmatism, which in turn serves as an essential driving force for the contemporaneous high-T deformation/metamorphism.  相似文献   

10.
Precambrian granitic basement rocks obtained from well BH-36 of Bombay High Field, western offshore of India has been studied both by Rb-Sr and K-Ar dating methods. Seven basement samples chosen from two cores have yielded whole rock Rb-Sr isochron age of 1446 ± 67 Ma with an initial87Sr/86Sr ratio of 0.7062 ± 0.0012. This age has been interpreted as the formation/emplacement time of the granite. Two biotite fractions of different grain size separated from a sample CC6B2T have yielded Rb-Sr mineral isochron age of 1385 ± 21 Ma. However, these fractions when studied by K-Ar dating method have yielded slightly higher but mutually consistent ages of 1458 ± 43 Ma and 1465 ± 43 Ma, respectively. Further, two biotites separated from additional samples CC5B9T and CC6B3B have yielded K-Ar ages of 1452 ± 42 Ma and 1425 ± 40 Ma with an overall mean age of 1438 ± 19 Ma. This mean K-Ar age is indistinguishable from whole rock Rb-Sr isochron as well as mineral isochron age within experimental error. The similarity in the whole rock and biotite ages obtained by different isotopic methods suggests that no thermal disturbance has occurred in these rocks after their emplacement/formation around 1450 Ma ago. The present study provides the evidence for the existence of an important Middle Proterozoic magmatic event around 1400-1450 Ma on the western offshore of India which, hitherto, was thought to be mainly confined to the eastern Ghats, Satpura and Delhi fold belt of India. This finding may have an important bearing on the reconstruction of Proterozoic crustal evolution of western Indian shield.  相似文献   

11.
Detailed Rb-Sr and Sm-Nd isotopic analyses have been completed on the lherzolitic shergottites ALH77005 and LEW88516. ALH77005 yields a Rb-Sr age of 185 ± 11 Ma and a Sm-Nd age of 173 ± 6 Ma, whereas the Rb-Sr and Sm-Nd ages of LEW88516 are 183 ± 10 and 166 ± 16 Ma, respectively. The initial Sr isotopic composition of ALH77005 is 0.71026 ± 4, and the initial εNd value is +11.1 ± 0.2. These values are distinct from those of LEW88516, which has an initial Sr isotopic composition of 0.71052 ± 4 and an initial εNd value of +8.2 ± 0.6. Several of the mineral and whole rock leachates lie off the Rb-Sr and Sm-Nd isochrons, indicating that the isotopic systematics of the meteorites have been disturbed. The Sm-Nd isotopic compositions of the leachates appear to be mixtures of primary igneous phosphates and an alteration component with a low 143Nd/144Nd ratio that was probably added to the meteorites on Mars. Tie lines between leachate-residue pairs from LEW88516 mineral fractions and whole rocks have nearly identical slopes that correspond to Rb-Sr ages of 90 ± 1 Ma. This age may record a major shock event that fractionated Rb/Sr from lattice sites located on mineral grain boundaries. On the other hand, the leachates could contain secondary alteration products, and the parallel slopes of the tie lines could be coincidental.Nearly identical mineral modes, compositions, and ages suggest that these meteorites are very closely related. Nevertheless, their initial Sr and Nd isotopic compositions differ outside analytical uncertainty, requiring derivation from unique sources. Assimilation-fractional-crystallization models indicate that these two lherzolitic meteorites can only be related to a common parental magma, if the assimilant has a Sr/Nd ratio near 1 and a radiogenic Sr isotopic composition. Further constraints placed on the evolved component by the geochemical and isotopic systematics of the shergottite meteorite suite suggest that it (a) formed at ∼4.5 Ga, (b) has a high La/Yb ratio, (c) is an oxidant, and (d) is basaltic in composition or is strongly enriched in incompatible elements. The composition and isotopic systematics of the evolved component are unlike any evolved lunar or terrestrial igneous rocks. Its unusual geochemical and isotopic characteristics could reflect hydrous alteration of an evolved Martian crustal component or hydrous metasomatism within the Martian mantle.  相似文献   

12.
On the basis of U-Pb, Rb-Sr and K-Ar isotope analyses of Proterozoic rocks and minerals, a chronology has been established for the tectonic, intrusive and metamorphic evolution of the Svecokarelian orogeny 1750–1950 Ma ago in the Uppsala Region, Eastern Sweden. It is suggested that when synkinematic granitoids intruded the orogenic belt, at a stage of general subsidence and at medium metamorphic conditions (600°C and 3.5–4 kbar), the U-Pb isotope system in zircons closed earlier than the Rb-Sr whole-rock system. The zircon age (1886 Ma) reflects the intrusion and crystallization of the rock melt and the Rb-Sr whole-rock age (1830 Ma) the time when the temperature had decreased below the threshold for 87Sr migration. The Rb-Sr whole rock age (1898 Ma) determined for metaandesites and metadacites reflects a recrystallization related to the intrusion of the granitoids. On the contrary, the more silicic metarhyodacitic volcanic rocks have a Rb-Sr whole rock age (1830 Ma) reflecting the cessation of the synkinematic metamorphism. The difference in the way the Rb-Sr isotope system responds in subsilicic or silicic metavolcanics is probably dependent on the amount of radiogenic 87Sr and on the fixation of 87Sr in Ca-rich minerals. Subsequent, late-kinematic, low amphibolite facies metamorphism has not altered the Rb-Sr ages of the granitoids and the recrystallized metavolcanics.  相似文献   

13.
This paper presents the results of geochronological studies of the Tomtor alkaline-ultramafic pluton, one of the largest Nb, Y, Sc, and TR deposits. A new scheme of its magmatism is given. The current K-Ar and Rb-Sr ages of different igneous rocks of the Tomtor pluton range from 800 to 250 Ma [Zaitsev et al., 1992; Frolov et al., 2003]. Such dispersion is probably related to the intense carbonatization of the rocks. The U-Pb zircon and 40Ar/39Ar mica ages indicate two stages of the formation of the pluton (700 and 400 Ma), which agrees well with the age of cycles of rift-related tectonogenesis of the Siberian platform.  相似文献   

14.
The Bottle Lake Complex is a composite granitic batholith emplaced into Cambrian to Lower Devonian metasedimentary rocks. Both plutons (Whitney Cove and Passadumkeag River) are very coarse grained hornblende and biotite-bearing granites showing petrographic and geochemical reverse zonation. Two linear whole rock Rb/Sr isochrons on xenolith-free Whitney Cove and Passadumkeag River samples indicate ages of 379±5 m.y. and 381±4 m.y., respectively, in close agreement with published K-Ar ages for biotite from Whitney Cove of 377 m.y. and 379 m.y., and for hornblende 40Ar/39Ar determinations from Passadumkeag River which indicate an age of 378±4 m.y. The initial Sr isotopic ratio for Whitney Cove is 0.70553 and for Passadumkeag River is 0.70414. A whole-rock isochron on a suite of xenoliths from the Passadumkeag River granite indicates a whole rock Rb-Sr age of 496±14 m.y., with an initial Sr isotopic ratio of 0.70262.Two types of zircon exhibiting wide petrographic diversity are evident in variable proportions throughout the batholith. One of these types is preferentially found in a mafic xenolith and it is widely dispersed in the host granites forming discrete grains and probably as inclusions in the other type of zircon. U-Pb analyses of zircons give concordia intercept ages of 399±8 m.y. for Whitney Cove, 388±6 m.y. for Passadumkeag River, 415 m.y. for a mafic xenolith in Passadumkeag River, and 396±32 for combined Whitney Cove and Passadumkeag River granite. The zircons show a spread of up to 20 m.y. in the 207Pb/206Pb ages. Omitting the finest zircon fraction in the Passadumkeag River results in a concordia intercept age of 381±3 m.y., in better agreement with the whole-rock Rb-Sr and mineral K-Ar ages. For the Whitney Cove pluton, exclusion of the finest fraction does not bring the zircon age into agreement with the Rb-Sr data.Age estimates by the whole rock Rb-Sr, mineral K-Ar and Ar-Ar methods suggest that the crystallization age of the plutons is about 380 m.y., slightly younger than the U-Pb zircon intercept ages. A possible reason for this discrepancy is that the zircons contain inherited lead. Thus, zircon U-Pb ages might represent a mixture of newly developed zircon and older inherited zircon, whereas the Rb-Sr whole rock age (380 m.y.) reflects the time of crystallization, and the argon ages result from rapid cooling after emplacement.  相似文献   

15.
江西大吉山钨矿成矿年代学研究   总被引:25,自引:0,他引:25  
大吉山钨矿床是一个大型的石英脉型钨矿床。矿床在空间上与燕山早期复式花岗岩相伴。利用云母单矿物的K Ar同位素年龄测试方法,测定了矿床有关的花岗岩及矿脉的同位素年龄。结果表明,黑云母花岗岩中黑云母K Ar年龄为(160 3±3 03)Ma和(164 2±3 5)Ma,二云母花岗岩中白云母K Ar年龄为(160 6±2 8)Ma,含钨石英脉中白云母K Ar年龄为(152 6±2 35)Ma和(158 1±2 8)Ma。钨成矿与花岗岩的成岩基本不存在时差,推测含钨石英脉的形成可能与岩浆分异出的富含矿化剂和成矿元素的流体有关。  相似文献   

16.
《Gondwana Research》2001,4(3):409-420
Petrological studies on the surrounding metamorphic rocks of the Eppawala carbonatite body, Wanni complex, Sri Lanka, revealed that these rocks had been metamorphosed under amphibolite to granulite facies conditions. Garnet-sillimanite-biotite gneiss shows lower range of metamorphic temperature (730–770°C) than the migmatite gneiss (750–780°C) and the pressure varies from 6.6–7.8 kbar to 5.6–6.4 kbar respectively. The metamorphic age of the garnet-sillimanite-biotite gneiss and migmatite gneiss dated 607±23 Ma and 626±16 Ma, respectively for mineral — whole rock isochron in Sm-Nd system. These ages are compatible with the ages of regional high-grade metamorphism occurred 610–550 Ma in the three crustal units in Sri Lanka.Rb-Sr system for biotite, apatite and whole-rock fractions suggests 493±5 Ma for the Eppawala carbonatite body. This age indicates the cooling age of the biotite. The presence of non-crystalline carbonatite matrix and large hexagonal apatite crystals suggests a slow cooling history. Further, low closure temperature of biotite in Rb-Sr system suggests that the intrusion age of carbonatite body should be more than 493 Ma, but non-metamorphosed nature provides evidence that the intrusion age of the carbonatite body should be less than the period of regional metamorphism 610–550 Ma. Therefore, Eppawala carbonatite body has a strong possibility to be a late to post magmatic intrusion. The other late to post magmatic intrusions in the Wanni complex and Highland complex are dated between 580–550 Ma. Therefore, the most probable intrusion age of the Eppawala carbonatite body is suggested to be around 550 Ma.  相似文献   

17.
The isotopic composition of strontium has been determined for samples from the alkaline lavas of the Dunedin Volcano covering the range basalt, basanite, intermediate compositions, phonolite and quartz normative trachyte. The basaltic, intermediate and phonolitic rocks appear to be comagmatic and have similar low initial Sr87/Sr86 ratios around 0.7030, comparable with those of other alkaline provinces. The quartz normative trachytes have initial ratios significantly higher than those of the other rocks (0.7040) although their age is comparable. Contamination by sea water or crustal material could explain the higher initial ratios of the trachytes but it does not account for important features of their chemistry. It is suggested that the trachytes formed by partial melting involving an alkali feldspar-rich portion of older igneous rocks. Rb-Sr ages obtained are comparable with published K-Ar dates. The Rb-Sr age for the trachytes is 14.± 7 m.y. and the other alkali-enriched rocks give ages ranging within the limits of 14.4 to 12.0 m.y.  相似文献   

18.
北秦岭褶皱带岩浆活动时代特征及地质意义   总被引:2,自引:2,他引:2  
黄萱  孙宝山 《岩石学报》1995,11(3):312-319
本文通过展示截止1994年北秦岭地区岩浆岩的K-Ar、(40)Ar-(39)Ar、Rb-Sr、Sin-Nd、U-Pb谐和图、单颗粒锆石逐级蒸发(207)Pb-(206)Pb等方法同位素年龄结果,进行综合对比讨论,从而确定这一地区岩浆活动,在早元古末期以后多次发生,直至中生代。它们包括大约2000Ma、1210~920Ma、822~794Ma、464~360Ma(奥陶纪-早石炭世)、195~105Ma(早侏罗世-白垩纪)等五个地质时期。另外,根据北秦岭地区岩浆活动对确定变质岩层分层时限的制约的观点,提出该地区变质岩层划分的五个岩群的时序,首先是秦岭群(大于1700Ma)、然后是宽坪群(1100Ma前后)、二郎坪群(800Ma前后)、草滩沟群或丹凤群(450Ma前后)、中生代岩群(200Ma前后)等等。它们是在不同时期,伴随着某一构造运动旋回形成的变质岩层。所展示的年龄资料同时为读者了解各种同位素年代测定方法的适应性,以及了解在复杂地质构造区域,如何有效开展同位素年代学研究,提供有益经验。  相似文献   

19.
Two major episodes are evident in the metamorphic and igneous Precambrian basement of the Llano Uplift, central Texas. Dynamothermal metamorphism was accompanied by minor basaltic and tonalitic syntectonic plutonism. This was followed by a second period of thermal overprinting accompanying emplacement of high-K2O, high-level major granite plutons. Extensive isotopic age work by Zartman, published in the mid-1960s, suggests that development of the basement complex, spanning an interval of 150 m.y. or more, began with deposition of Valley Spring Gneiss (the lowest unit) and terminated about 1,050 m.y. ago with final postmetamorphic cooling (indicated by retention ages of Ar and Sr in biotite). We have supplemented these data with more than 50 new K-Ar and Rb-Sr analyses.Two foliated plutons in the southeast are 1,167±12m.y. (2) old, with distinctly different initial 87Sr/86Sr ratios. Field relationships and isotopic data indicate that these plutons are the earliest yet known in the Uplift. Metamorphosed basalt dikes and gabbro bodies were emplaced immediately preceding and following the syntectonic plutons. Eleven of these rocks had extremely uniform initial 87Sr/ 86Sr=0.7029±0.0005. A Rb-Sr whole-rock isochron of the unfoliated Enchanted Rock pluton indicates an age of 1,048±34 m.y. with initial 87Sr/86Sr= 0.7048±0.0007. One of the northern unfoliated granites, the Lone Grove pluton, gives a whole-rock isochron age of 1,056±12 m.y., with initial 87Sr/86Sr = 0.7061±0.0003. All of the intrusive rocks have initial 87Sr/86Sr ratios consistent with a source in the mantle or lower crust, but not in ancient remobilized continental crust. Six K-Ar hornblende ages from metabasalts are 1,078±19 m.y. (1), in general agreement with K-Ar and Rb-Sr mineral ages elsewhere in the eastern Llano Uplift. A metasedimentary Valley Spring Gneiss sample from the western Uplift has a whole rock-muscovite Rb-Sr age of 1,129±9 m.y. Field and isotopic data are now sufficiently numerous to permit a moderately detailed reconstruction of the Precambrian history of the area.  相似文献   

20.
An isotopic dating investigation (66 K-Ar and 34 Rb-Sr analyses) provided the geochronological framework for the Alpine events of metamorphism and granitic magmatism on Naxos. The oldest phase of high-pressure/medium-temperature metamorphism, M1, was dated by Rb-Sr and K-Ar analyses of paragonites, phengitic muscovites and muscovites at 45±5 Ma (Middle Eocene). Most of the record of the M1 phase has been eraded by a second phase of medium-pressure/high-temperature metamorphism, M2, which induced a metamorphic zonation with anatectic melting in the highest-grade part, the migmatite dome. Most K-Ar dates of M2 hornblendes, muscovites, biotites and tourmalines range from about 21 Ma in the lower-grade part (biotite-chloritoid zone) to about 11 Ma in the migmatite dome. From the pattern of K-Ar mineral dates it is concluded that the M2 phase took place 25±5 Ma ago (Late Oligocene/Early Miocene) and was followed by a prolonged cooling history until about 11 Ma ago (Late Miocene), when the ambient temperature in the migmatite dome had decreased to below 400–360 °C. A Rb-Sr whole-rock isochron analysis of a granodioritic mass dated the intrusion (and the associated M3 phase of contact-metamorphism) at 11.1±0.7 Ma (Late Miocene), with an initial 87Sr/86Sr ratio of 0.7112 ±0.0001. A local phase of low-grade retrograde metamorphism, M4, probably related to Late Alpine overthrusting, was dated at about 10 Ma (Late Miocene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号