首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Planetary and Space Science》1987,35(10):1317-1321
In this study a method is outlined which is capable of giving neutral temperatures and height changes in the aurora when the molecular emissions originate from the E-region.Absolute spectrometric measurements of N2+ 1NG and O2+ 1NG bands and the auroral green line are performed in a nightside aurora. Rotational temperatures and band intensities are deduced by a least-squares fit of synthetic spectra to observations. There is a close correlation between the variations in rotational temperatures and the relative intensity ratio of N2+ 1NG(0,3) and O2+ 1NG(1,0) bands. The change in the relative intensity ratio is similar to the intensity variation predicted by the changing N2 and O2 densities from 120 to 150 km, obtained from the MSIS 83 model atmosphere, and the derived neutral temperature variations are consistent with a similar change in emission height of the aurora. Therefore the changing temperature is most likely due to a changing emission height of the aurora, and no local heating can be inferred.  相似文献   

2.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

3.
Thomson (incoherent) scatter radar measurements of F-region electron densities and temperatures were made approximately twice per month throughout 1966 and 1967 at Millstone Hill for periods of 24 hr. Owing to the increase in sunspot activity the results display a rich variety of different types of behaviour. Geomagnetically quiet days tended to follow patterns observed near sunspot minimum. Thus in winter there is typically a marked diurnal variation in electron density with a peak near noon and often a smaller secondary maximum between 02 and 04 EST. In summer there is less day-to-night variation and the peak density is encountered near ground sunset. Usually hmaxF2 is higher in summer than winter and the layer thickness is larger also.Some magnetically disturbed days follow a distinct pattern in which Nmax and hmax are normal during the first day of the storm until afternoon when they both increase to very high values. There is then a corresponding decrease in electron temperature. During the night the electron temperature often reaches abnormally high values, providing evidence of nocturnal heating. On the following day Nmax and hmax are abnormally low.During 1967 instances in which the trough of low electron density moved south to occupy a position over Millstone became frequent. The electron temperature rose to particularly high values on these occasions. These morphological features are discussed in terms of current theoretical ideas. The results are also employed to derive seasonal variations of electron temperature and protonospheric heat flux. It is shown that since 1964 the protonospheric heat flux has been larger in winter than summer and displays a clear sunspot cycle variation.  相似文献   

4.
The propagation of the geomagnetic effect into the exosphere is investigated based on a free-flight particle kinetic model of exospheric densities and temperatures. Exobasic neutral gas conditions and their variations during a geomagnetic storm occurrence are adopted as given by the OGO-6 model. The contributions of particles originating at different exobasic locations to the density and temperature at exospheric regions are taken into account according to the time needed to reach these regions. A short-time geomagnetic variation of exobasic conditions is simulated by a Gaussianshaped Ap -index variation with an FWHM of 20 min. It is then shown that the relative amplitude and the half width of the geomagnetic density variation increase strongly with exospheric heights. The density peak and the main temperature peak are shown to be delayed by more than one and two hours, respectively, at heights above 10,000 km. The temperature variation changes from a singlepeaked to a double-peaked structure at greater exospheric heights. It is shown that the exospheric density response to geomagnetic disturbances is detectable in observations of the geocoronal He-1-584 Å resonance radiation.  相似文献   

5.
The median values of the principal ionospheric quantities of the Venus dayside ionosphere are presented. The values are derived from the quantities measured by the Pioneer-Venus orbiter retarding potential analyzer over a period of two Earth yaers at solar cycle maximum. Quantities reported are total ion density, O+ density, O2+ density, sum density (NO+ + N2+ + CO+), CO2+ density, ion temperature, electron temperature, and plasma particle pressure. The data are organized to reveal altitude, solar zenith angle, solar longitude, and latitude dependences. The O+ density exhibits both a solar longitude and a latitude dependence which we suggest is caused by superrotation of the thermosphere and/or ionosphere. Asymmetry between the dawn and dusk terminator regions in the behavior of other quantities is also descibed.  相似文献   

6.
The effects of vertical variations in density and dielectric constant on nadir-viewing microwave brightness temperatures are examined. Stratification models as well as models of a continuous increase in density with depth are analyzed. Specific applications address the vertical structure of the lunar frontside regolith, utilizing combined constraints from Apollo data, bistatic radar signatures, and Earth-based measurements of the lunar microwave brightness temperature.Results have been analyzed in terms of the effects on the zeroth and first harmonic of the lunar disk-center brightness temperature variation over a lunation, and their wavelength dependence. Lunation-mean brightness temperatures, which are diagnostic of emissivity and steady-state sub-surface temperatures, are sensitive to both near-surface soil density gradients and single high-impedance dielectric contrasts. Models of the rapid density increase in the upper 5–10 cm of the lunar regolith predict brightness temperature decreases of 2–10°K between λ0 = 3 and 30 cm. The magnitude of this spectral variation depends upon the thickness of a postulated low-density surface coating layer, and the magnitude of the density gradient in the transition soil layer. Comparable decreases in brightness temperature can be produced by a stratified two-layer model of soil overlaying bedrock if the high-density substrate lies within 1–2 m of the surface. Multiple soil layering on a centimeter scale, such as is observed in the Apollo core samples, is not likely to induce spectral variations in mean brightness temperature due to rapid regional variations in layer depths and thicknesses.The fractional variation in disk-center brightness temperature over a lunation (first harmonic) can be altered by vertical-structure effects only for the case in which a larger and abrupt dielectric contrast exists within the upper surface layer where the significant diurnal variations in physical temperature occur. Soil density variations do not cause scattering effects sufficient to significantly alter the microwave emission weighting function within the diurnal layer. For the Moon, this layer consists of the upper 10 cm. Since no widespread rock substrate as shallow as 10 cm exists in the lunar frontside, only volume scattering effects, due to buried shallow rock fragments, can explain the apparent high electrical loss inferred from Earth-based measurements of the amplitude of lunation brightness temperature variations.Representative models of the lunar frontside vertical structure have also been examined for their effects of radar cross-section measurements and resultant inferences of bulk dielectric constant. Models of the near-surface density gradient predict a significant increase in the remotely inferred dielectric constant value from centimeter to meter wavelengths. Such a model is in general agreement with the dielectric constant spectrum inferred from Earth-based brightness temperature polarization measurements, but is difficult to reconcile with the Apollo bistatic radar results at λ0 = 13 and 116 cm.  相似文献   

7.
A magnetic type mass spectrometer has been flown on two ESRO sounding rockets from ESRANGE (Kiruna 68°N) on February 25 and 26, 1970. The first launch was at sunset (16:33 UT) and the second the next morning, during sunrise (04:47 UT). For both flights the solar zenith angle was approximately 98°. The instrument was measuring simultaneously the neutral gas and positive ion composition and the total ion density. In this paper the results of the ion composition measurements are presented. For both flights the main ion constituents measured between approximately 110–220 km were O+, NO+ and O2+. Only at sunset were N+ and N2+ detected above 200 km. In spite of the identical solar UV-radiation, pronounced sunset/sunrise variations in the positive ion composition were found. The total ion densities at sunrise were between 5×103 and 5 × 104 ions cm?3 and therefore too high to be explained without a night-time ionization by precipitated particles. At sunrise the NO+ and O2+ profiles show a correlated wavelike structure with three pronounced almost equally spaced layers in the E-region. Only the highest layer is present in the O+ profile. Locally enhanced field aligned ionization originated by particle precipitation and an E × B instability are the most likely source for this structure. In the E- and lower F-regions the NO+O2+ ration increased overnight from values around 7 at sunset to 15 at sunrise, correlated with an increase of the local magnetic activity index K from 0+ to 2°. This could be explained if the NO density and magnetic activity are correlated.  相似文献   

8.
A comparison has been made between the predictions of the theory for radial variations of both Alfvénic fluctuations and solar wind proton temperatures proposed by Tu (1987, 1988) and the statistical results of hourly averaged plasma and magnetic field data observed by Helios 1 and 2 from launch through 1980 for different solar wind speed regimes. The comparison shows that for speed ranges between 500–800 km s-1, the radial variation of the proton temperature between 0.3 and 1 AU can be explained by heating from the cascade energy determined by the radial variation of the total variance of magnetic field vector. The explanation of the radial variations of both temperature and the total variance of magnetic fields for speed ranges less than 400 km s -1 is less clear.This project was supported by National Natural Science Foundation of China for Tu's part of the work.  相似文献   

9.
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

10.
    
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

11.
Atmospheric densities at 169 km have been obtained for the period 19 August–3 September 1970 from the measurements of an accelerometer on a low altitude satellite and from the orbital decay of the same satellite. Three different sets of local time and latitude conditions were provided by the data; two from the accelerometer measurements, before and after perigee, and one at perigee, from the orbital decay data. Under the generally quiet magnetic activity conditions that prevailed during the data-taking period, the short term density fluctuations were found to be poorly correlated with the small Kp variations. However, on the greater time scale of a day, a definite relationship was found between the daily average density and the daily geomagnetic index Ap. Further, the increase in the density corresponding to Ap was largest at the highest latitude. The high latitude accelerometer data exhibited a quasi-daily periodicity, with maximum densities occurring when the satellite was within the dayside cusp. This effect also appeared to depend on the degree of auroral electrojet activity as defined by the AE index. Comparisons of the data with the Jacchia?70 and ?71 models indicated that these models may give density values which are too small for the conditions and time period corresponding to the data.  相似文献   

12.
Atmospheric composition in the turbopause regime was determined by four rocket-borne mass spectrometers, which employed shock-freezing cryo-ion sources. Number densities of N2, O2, O, Ar and CO2 are presented for these experiments. The results are compared with those of other rocket experiments taken from the literature. Ar/N2 ratios are analyzed with respect to atmospheric turbulence. Magnitude and variability of atomic oxygen layer maximum density and layer content are discussed. Variations of O densities and simultaneous Ar/N2 ratio changes are compared. Six CO2 measurements are discussed in terms of CO2/N2 ratios.  相似文献   

13.
Theoretical work on the time of occurrence of the diurnal maxima of total mass density (?), number densities (n) and temperature (T) in the upper thermospheric region is discussed. It is suggested that the observed ρ-T phase difference is due to the neutral air wind acting as a heating or cooling agent and to variations in n and T at the lower boundary of the region. The observed n(O)-n(N2)-T phase differences may be caused by vertical diffusion of atomic oxygen through molecular nitrogen and by variations in n and T at the lower boundary.  相似文献   

14.
We present the first reported measurements of the intensity of a “hotband” transition for the H3+ molecular ion in the northern auroral/polar region of Jupiter. This transition is identified as the R(3, 4+) line of the (2v2(l=0)→v2) hotband, with a wavelength of 3.94895 μm. This is the first time such a transition has been measured outside the laboratory, and the wavelength as measured on Jupiter is within the experimental accuracy of the lab measurement. This detection makes it possible to investigate H3+ transitions that simultaneously originate from different vibrational levels. We use the intensity ratio between this line and the Q(1, 0) fundamental transition to derive effective vibrational temperatures, column densities, and total emission parameters as a function of position across the auroral/polar region. Effective temperatures range from ∼900 to ∼1250 K; an increase in average temperature during our observing run of ∼100 K is noted. The derived temperatures are toward the high end or in excess of the auroral temperature range that has been reported in the literature to date. The relationship among emission intensity, temperature, and density is shown to be complex. This may reflect the nonthermalization of the vibrational levels at the gas densities prevailing in the jovian thermosphere. An alternative analysis allowing for this effect is presented. But this approach requires thermospheric temperatures to be ∼1500 K at the level that the majority of H3+ is being produced, higher than has previously been proposed.  相似文献   

15.
Empirical models of molecular ion densities (N2 +, NO+, O2 +) and the electron density (N e ) are presented in the altitude interval 50–4000 km as functions of time (diurnal, annual), space (position, altitude) and solar flux (F 10.7). Using observations of 6 satellites (AE-C, AE-D, AE-E, ALOUETTE-2, ISIS-1, ISIS-2), 4 incoherent scatter stations (Arecibo, Jicamarca, Millstone Hill, St Santin) and more than 700 D-region profiles, this model describes the global gross features of the ionosphere for quiet geophysical conditions (K p 3).The molecular ion densities and the electron density increase with increasing altitude up to a maximum (or several maxima) - and decrease from thereon with increasing height. Between ~80 and 200 km, the main ionic constituents are NO+ and O2 +; below ~80 km cluster ions are predominating. During local summer conditions the molecular ions and N e increase around polar latitudes and decrease correspondingly during local winter. The diurnal variations are intrinsically coupled to the individual plasma layers; in general, the molecular ion and electron densities are enhanced during daytime and depleted during nighttime (for details and exceptions, see text).  相似文献   

16.
Using the Saturn Thermosphere Ionosphere Model (STIM), we present a study of the diurnal variation of electron density, with a focus on comparisons with peak electron densities (NMAX) inferred from the low-frequency cutoff of radio emission due to lightning in the lower atmosphere, called Saturn Electrostatic Discharges (SEDs). It is demonstrated that photochemistry in Saturn’s ionosphere cannot reproduce the SED-inferred diurnal variation in NMAX unless additional production and loss sources outside of the current best estimates are considered. Additional explanations of the SED-inferred diurnal variation of NMAX are presented and analyzed, such as the possibility that the low-frequency cutoff seen in SEDs is due to the presence of sharp low-altitude layers of plasma, as frequently seen in radio occultation measurements. Finally, we outline the observational constraints that must be fulfilled by any candidate explanations of the SED-inferred diurnal variation of NMAX.  相似文献   

17.
Radially and tangentially polarized pictures of the solar corona obtained near 4500 Å during the 30 June, 1973 solar total eclipse have been used to derive a model of a trans-polar coronal hole. The hole is identified by using OSO-7 EUV spectroheliograms. The line of sight coincides with the privileged plan of the hole over the N-polar region. A new method of absolute calibration is used. The Saito (1970) method is applied to determine the electron densities. Extrapolated values of densities down to the surface are lower than have ever been observed although derived hydrostatic temperatures are certainly not: N e × 107 cm–3 and T = 2 × 106 K. The morphological peculiarities of polar regions are considered.On leave from Institut d'Astrophysique, CNRS, Paris as NRC Research Associate.  相似文献   

18.
R. Fisher  T. Pope 《Solar physics》1971,20(2):389-399
Nine coronal emission lines representing five stages of Fe ionization and one stage of Ni were observed in an enhanced coronal region. The data from these observations are presented along with a density model of the enhanced region obtained from the FeXIII and NiXV emission line ratios as a function of position angle. The electron densities obtained from FeXIII lines range from N e = 108 to 109 cm–3, and are slightly lower for NiXV line data. Estimates of the variation of temperature over the enhanced region are inferred from the observed line intensities.  相似文献   

19.
A study of the upper-atmosphere variations induced by solar activity was made by using 29,574 densities derived from the drag of 10 satellites in the interval 1958–1971. In a comparison of the respective merits of the Ca II-plage index and the 10.7 cm solar flux to represent the erratic (‘27 day’) component of the variation, the latter is shown to give invariably better results. The ratio ΔTδF of the temperature variations to the variations of the decimetric flux is shown to vary considerably with solar activity, but little with height or with local solar time. The time lag of the atmospheric variations behind those of the decimetric flux varies from a minimum of 0.9 day at noon to 1.6 days at midnight.  相似文献   

20.
《New Astronomy》2003,8(5):427-437
The 2D Hβ spectral data of the post-flare loop system (PFLs) of August 17, 1989 are obtained and analyzed quantitatively for three different times. Three physical quantities (i.e., the column number density of hydrogen atoms at the second level along the line-of-sight direction N2, the excitation temperature Tex and micro-turbulence velocity Vt) and their 2D fields are derived during the three times. The time variations of the 2D field are given for the three quantities more than 1 h after the maximum of the Hα flare. Our analyses show that the average values of N2 and Vt decrease with time, while Tex is nearly unchanged except for the top part of the PFLs where it is increasing slightly with time. A new evolution property is found in which the regions with the maxima of Tex and N2 move from the middle of the southern leg towards the top part of the PFLs, while the position of Vt maximum shifts from the top part towards the northern leg of the system. This scenario may be a result of successive formation of new loops at higher heights while under continuous cooling. The emission measure (EM), electron density ne and pressure Pe in the PFLs are also estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号