首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
1.计算并确定第21周地磁活动A_p的峰值 第21周太阳活动峰年已来到,国际上组织SMY联测活动。本文利用极值分布数学方法与经验规律相结合,对21周地磁活动A_p指数年均值的峰值及峰值时间作一定量预报,其结果与国外的预报作一比较。  相似文献   

2.
太阳辐射指数F10.7是衡量太阳活动强度的重要参数,在构建高层大气模型、电离层建模、空间通信等方面发挥着重要作用.为满足应用场景对F10.7预报长期性、简便性的要求,本文研究了基于太阳活动“相似周”的F10.7指数长期预报方法.利用历史周期的相似性构造F10.7变化趋势预测线,并对其进行最小二乘拟合得到预报目标周期F10.7长期变化趋势的公式.本文对相似周数据处理过程进行了系统性说明,并通过最小二乘拟合过程将经验公式法可量化、易表达的优势融入到“相似周”法中,建立的预报公式仅有时间参量,可简便而且准确地预报F10.7.通过对第24周进行预报实验,得到以下结论:(1)该方法预报结果平均相对误差为12.69%,与现有经验公式62.08%的平均相对误差相比,精度显著提升;(2)在太阳周期内的大部分年份,该方法可较好地满足F10.7长期趋势预报的需求,在太阳活动高峰年平均相对误差为16.82%,较现有经验公式精度提升一倍.进一步地,给出第25...  相似文献   

3.
文对照太阳活动持续性预报技术(CH) , 统计了世界警报处的技术( W) 、北京天文台七十年代技术(B7) 和九十年代技术(B9) 同时期的短期预报效果提出了评价预报技术效果的Q 指数, 它综合反映了报准的正效果和误报的负效果利用Q 指数, 对上述典型预报技术的效果进行了对比评价; 并据之提出了改进预报技术的具体科学途径特别指出, 短期预报技术思路应做重要转变: 太阳活动持续性预报技术应作为改进后技术的基本成分; 把现在直接预报太阳活动的水平, 转变为预报太阳活动水平的变化  相似文献   

4.
建国以来,不少天文工作者在太阳活动长期预报、中期和短期预报方面作了大量工作,但是,太阳活动的一至几年的中长期预报却很少有人涉足。本文试图用门限自回归模型和二次曲线方法,探讨时间长度为一年的月平滑黑子相对数的预报。并给出两种方法的综合预报结果。  相似文献   

5.
日地系统学中, 自然灾害与太阳活动的关系研究, 导致了自然灾害预测与太阳活动预测之间关系的探讨本文比较了太阳活动预测与自然灾害预测, 指出它们在目的、用户、观测资料的特征、预报方法以及面临的问题几方面的差异; 介绍了自然灾害预测与太阳活动预测的几点可能的关系; 简单讨论了衡量预报水平的指标问题最后列出了第23 黑子周特征值的一些预测结果  相似文献   

6.
赤道电离异常(Equatorial Ionization Anomaly,EIA)是低纬电离层中的一个重要现象.本文基于IGS台网提供的2001—2008年期间的电离层总电子含量(Total Electron Content,TEC)数据,分析了120°E区的EIA强度和磁南北半球不对称性在磁平静时期的变化特征,包括对地方时、季节和太阳活动的依赖.本文结果表明,(1) EIA强度表现出显著的随地方时和季节的变化特征.EIA强度在0200LT和2000LT附近分别出现一个极值,且2000LT附近的EIA强度更大;EIA强度通常在春/秋季较大,在夏/冬季较小,且冬季要大于夏季.(2) EIA南北半球不对称也表现出随地方时和季节变化特征.EIA半球不对称在0200LT和2000-2200LT附近分别出现一个极值;EIA半球不对称的季节变化特征还依赖于太阳活动,太阳活动高年期间,EIA半球不对称通常在春/秋季更显著;太阳活动低年期间,EIA半球不对称通常在冬季更显著.(3) EIA强度和半球不对称性的逐日变化和月变化表现出对太阳活动存在一定的依赖,但依赖性并不显著.2000LT (0200LT)附近的EIA强度的月变化与太阳活动整体呈正(负)相关,而2200LT (0200LT)附近的EIA半球不对称的月变化与太阳活动整体呈负(负)相关.(4)影响EIA强度变化的主要因素可归于纬圈电场和中性风场;影响EIA半球不对称变化的主要因素可归因为子午中性风场.  相似文献   

7.
利用半参数核估计法预报全球电离层总电子含量   总被引:1,自引:0,他引:1       下载免费PDF全文
本文将半参数平差模型引入电离层球谐函数系数的预报中,建立了半参数球谐函数模型(Semiparametric-Spherical Harmonic,Semi-SH)来预测全球电离层总电子含量.首先,通过快速傅里叶变换获得球谐函数系数的周期和振幅,将振幅高的主周期归入趋势函数,振幅低的剩余周期归入随机信号,建立了半参数模型,同时利用核估计方法拟合趋势函数,解算随机信号,并在时间域上进行外推,得到了预报时间的球谐函数系数,代入15阶电离层球谐函数模型,最后得出电离层总电子含量(Total Electron Content,TEC)的预报值.本文基于欧洲定轨中心(CODE)发布的球谐函数系数进行电离层TEC长期预报和短期预报分析,其中长期预报采用四年预报两年的模式对球谐函数系数进行预报,短期预报设计了三个算例,采用前30天预报后一天的模式,分别预报1天、滑动预报7天和滑动预报30天.实验结果表明:长期预报能够较好地反映全球电离层TEC的变化趋势和波动情况,Semi-SH模型对全球电离层TEC平均值(Mean TEC global,MTECglobal)的拟合值和预报值与MTECglobal实际值的相关系数分别为0.8743和0.8010,呈现出高度相关性.短期预报中,在太阳活动高年和太阳活动低年,Semi-SH模型在中纬度地区预报精度较CODE发布的电离层TEC 1天预报产品(CODE′S 1-Day Predicted GIM,C1PG)有较大提升,在高纬度与低纬度地区两种模型预报精度相当;Semi-SH模型在太阳活动高年和太阳活动低年30天滑动预报精度的均值均高于C1PG模型.实验结果说明了Semi-SH模型预报电离层TEC值的有效性.  相似文献   

8.
周仕勇 《内陆地震》1995,9(1):24-28
科学地选取了8种可用于地震短期日常会商的测震学定量预报参量,编写了相应的计算程式及分析预报软件包。计算了新疆乌鲁木齐等6个重点监测区的预报参量背景值和异常定量判据指标。根据参量动态曲线与已有强震震例的对应关系,对各预报参量的预报效能、预报高效能区及盲区、异常出现时段参数均作了详细分析。最后简要介绍了最新实际应用中的预报实例。研究结果及研制的相应软件在实际日常会商中具有较强的实用性价值。  相似文献   

9.
极值理论在中长期地震预报中的应用   总被引:15,自引:0,他引:15       下载免费PDF全文
一、引言 极值理论是概率论中的一个重要分支,在许多领域已经广泛应用。例如,研究洪水的统计规律和洪水预报,研究地震活动性等。本文在进一步分析地震过程和过去工作的基础上,对极值分布函数进行了修改,应用新的分布函数,用于偿试中长期地震预报。 由于极值理论本身的特点,对观测资料要求较低,它不需要一段时间(譬如50年)内  相似文献   

10.
本文得出了如下结果:(1)云南 M_s≥7级大地震多发生于太阳活动下降支;(2)云南各地震带上强震(M_s≥6级)的发生皆有一定的太阳活动背景;(3)近年云南强震(M_s≥6级)的频度变化存在着明显的11年周期,与太阳活动相吻合。因此,所述的这些现象可用于云南强震的中期预报。  相似文献   

11.
Using the characteristic values of sunspot number variations during the descent and ascent of solar cycles,a neural network is designed to make long-term predications of the ascending period and the maximum smoothed monthly mean sunspot number for the Solar Cycle 23. Moreover,the factor of geomagnetic disturbance is also added as an input. The trained and tested results from Solar Cycle 12 to 22 have been obtained. Finally,the predictions of the ascending period and the maximum smoothed monthly mean sunspot number are given for Solar Cycle 23.  相似文献   

12.
The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity peaks are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~108 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone. This means that a part of the poloidal field generated at the surface is advected by the meridional circulation all the way to the poles, down to the tachocline and equatorward to sunspot latitudes, while another part is diffused directly to the tachocline at midlatitudes, “short-circuiting” the meridional circulation. The sunspot maximum is the superposition of the two surges of toroidal field generated by these two parts of the poloidal field, which is the explanation of the double peaks and the Gnevyshev gap in sunspot maximum. Near the tachocline, dynamo has been operating in diffusion dominated regime in which diffusion is more important than advection, so with increasing speed of the deep circulation the time for diffusive decay of the poloidal field decreases, and more toroidal field is generated leading to a higher sunspot maximum. During the Maunder minimum the dynamo was operating in advection dominated regime near the tachocline, with the transition from diffusion dominated to advection dominated regime caused by a sharp drop in the surface meridional circulation which is in general the most important factor modulating the amplitude of the sunspot cycle.  相似文献   

13.
本文将G.M.Brown等人对离Sq电流体系焦点较远处台站的异常静日(AQD)的H分量分析,发展为对包括Sq电流体系焦点附近台站和Z、D分量在内的AQD分析。主要分析了中国五个地磁台D、H、Z三要素静日最大值和最小值出现时间的分布,及其季节变化和逐年变化规律。结果表明,D、Z也有和H类似的AQD现象,其出现的年频度,也有与太阳黑子数反相变化的趋势。在有三个多太阳周资料的佘山台,太阳极小年AQD(Zmax)出现的频度,和随后的太阳极大年的黑子数R呈近似线性的关系。最后,本文对今后我国开展变化磁场的分析研究提出了建议。  相似文献   

14.
The preliminary results of solar filaments distinguished in daily H-alpha observations at Kodaikanal (1912–2002) are presented. To mark the boundaries of solar filaments, methods based on automated procedures of marking low-contrast objects on the solar disk, as well as editing of the marked boundaries in a semiautomated manner, were developed. The characteristics of solar filaments were analyzed. Latitudinal diagrams of filaments number in 15–23 activity cycles were constructed. As is shown, one maximum in the filament latitudinal distribution may be clearly distinguished during activity cycles in both hemispheres. This maximum is located slightly higher (θ ~ 25°–30°) than the sunspot distribution maximum (θ ~ 14°–17°). However, there are no other local maxima related to the zonal structure of the large-scale magnetic field (Makarov and Sivaraman, 1989).  相似文献   

15.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

16.
The prediction of solar activity strength for solar cycles 24 and 25 is made on the basis of extrapolation of sunspot number spectral components. Monthly sunspot number data during the 1850–2007 interval (solar cycles 9–23) are decomposed into several levels and searched for periodicities by iterative regression in each level. For solar cycle 24, the peak is predicted in November 2013 with a sunspot number of 113.3. The cycle is expected to be weak, with a length of 133 mo (months) or 11.1 yr. The sunspot number maximum in cycle 25 is predicted to occur in April 2023 with a sunspot number 132.1 and a solar cycle length of 118 mo or 9.8 yr. Thus, solar cycle 24 is predicted to have an intensity 23% lower than cycle 23, and cycle 25 will be 5% lower than cycle 23.  相似文献   

17.
We study the mutual relation of sunspot numbers and several proxies of solar UV/EUV radiation, such as the F10.7 radio flux, the HeI 1083 nm equivalent width and the solar MgII core-to-wing ratio. It has been noted earlier that the relation between these solar activity parameters changed in 2001/2002, during a large enhancement of solar activity in the early declining phase of solar cycle 23. This enhancement (the secondary peak after the Gnevyshev gap) forms the maximum of solar UV/EUV parameters during solar cycle 23. We note that the changed mutual relation between sunspot numbers and UV/EUV proxies continues systematically during the whole declining phase of solar cycle 23, with the UV/EUV proxies attaining relatively larger values for the same sunspot number than during the several decennia prior to this time. We have also verified this evolution using the indirect solar UV/EUV proxy given by a globally averaged f0(F2) frequency of the ionospheric F2 layer. We also note of a simultaneous, systematic change in the relation between the sunspot numbers and the total solar irradiance, which follow an exceptionally steep relation leading to a new minimum. Our results suggest that the reduction of sunspot magnetic fields (probably photospheric fields in general), started quite abruptly in 2001/2002. While these changes do not similarly affect the chromospheric UV/EUV emissions, the TSI suffers an even more dramatic reduction, which cannot be understood in terms of the photospheric field reduction only. However, the changes in TSI are seen to be simultaneous to those in sunspots, so most likely being due to the same ultimate cause.  相似文献   

18.
Analysis of the time series into trigonometric series allows the investigation of cosmic-ray (CR) intensity variations in a range of periodicities from a few days to 1 year. By this technique the amplitude and the phase of all observed fluctuations can be given. For this purpose, daily CR intensity values recorded at Climax Neutron Monitor station for the time intervals 1979–1982 and 1989–1991, which correspond to the epochs of maximum activity for solar cycles 21 and 22, respectively, have been studied. The data analysis revealed the occurrence of new periodicities, common or not, in the two solar maxima. A search of our results was done by a power spectral analysis determining independently possible systematic periodic or quasi-periodic variations. Based on the fact that during these maxima the CR intensity tracks the solar flare index better than the sunspot number, the same analysis was performed on these data, which are equivalent to the total energy emitted by the solar flares. Both analyses result in periodicities with different probability of occurrence in different epochs. Occurrence at peaks of 70, 56, 35, 27, 21 and 14- days were observed in all time series, while the periods of 140–154 and 105 days are reported only in the 21st solar maximum and are of particular importance. All of the short-term periods except of those at 27 and 154-days are recorded for first time in CR data, but they had already been observed in the solar activity parameters. Moreover, each parameter studied here has a very different power spectrum distribution in periods larger than 154 days. The possible origin of the observed variations in terms of the CR interaction in the upper atmosphere and the solar cavity dynamics is also discussed here.  相似文献   

19.
There are limited homogeneous instrumental observations of the sunspot magnetic fields, but the Earth is a sort of a probe reacting to interplanetary disturbances which are manifestation of the solar magnetic fields. We find correlations between some parameters of geomagnetic activity (the geomagnetic activity “floor”—the minimum value under which the geomagnetic activity cannot fall in a sunspot cycle, and the rate of increase of the geomagnetic activity with increasing sunspot number), and sunspot magnetic fields (the sunspot magnetic field in the cycle minimum, and the rate of increase of the sunspot magnetic field from cycle minimum to cycle maximum). Based on these correlations we are able to reconstruct the sunspot magnetic fields in sunspot minima and maxima since sunspot cycle 9 (mid 19th century).  相似文献   

20.
We have determined the correlation coefficient between tree-ring index values and the sunspot cycle length for 69 tree-ring data sets from around the world of greater than 594 years duration. A matrix of correlation coefficients is formed with varying delay and smoothing parameters. Similar matrices, formed from the same data, but randomly scrambled, provide a control against which we can draw conclusions about the influence of the solar cycle length on climate with a reasonable degree of confidence. We find that the data confirm an association between the sunspot cycle length and climate with a negative maximum correlation coefficient for 80% of the data sets considered. This implies that wider tree-rings (i.e. more optimum growth conditions) are associated with shorter sunspot cycles. Secondly, we find that the climatic effect of the solar cycle length is smoothed by several decades and the degree of smoothing is dependent on the elevation and the geographical location of the trees employed. Thirdly, we find evidence for a cyclic variation of ∼200 years period in either solar cycle length or tree ring index. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号