首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The aim of this study was to investigate the effects of supercritical CO2 (scCO2) injection on the elastic and anelastic properties of sandstone at seismic and ultrasonic frequencies. We present the results of the low‐frequency and ultrasonic experiments conducted on water‐saturated sandstone (Donnybrook, Western Australia) flooded with scCO2. The sandstone was cut in the direction perpendicular to a formation bedding plane and tested in a Hoek triaxial pressure cell. During the experiments with scCO2, the low‐frequency and ultrasonic systems and the pump dispensing scCO2 were held at a temperature of 42°C. The elastic parameters obtained for the sandstone with scCO2 at seismic (0.1 Hz–100 Hz) and ultrasonic (~0.5 MHz) frequencies are very close to those for the dry rock. The extensional attenuation was also measured at seismic frequencies for the dry, water‐saturated, and scCO2‐injected sandstones. The applicability of Gassmann's fluid substitution theory to obtained results was also tested during the experiments.  相似文献   

2.
We measured the extensional‐mode attenuation and Young's modulus in a porous sample made of sintered borosilicate glass at microseismic to seismic frequencies (0.05–50 Hz) using the forced oscillation method. Partial saturation was achieved by water imbibition, varying the water saturation from an initial dry state up to ~99%, and by gas exsolution from an initially fully water‐saturated state down to ~99%. During forced oscillations of the sample effective stresses up to 10 MPa were applied. We observe frequency‐dependent attenuation, with a peak at 1–5 Hz, for ~99% water saturation achieved both by imbibition and by gas exsolution. The magnitude of this attenuation peak is consistently reduced with increasing fluid pressure and is largely insensitive to changes in effective stress. Similar observations have recently been attributed to wave‐induced gas exsolution–dissolution. At full water saturation, the left‐hand side of an attenuation curve, with a peak beyond the highest measured frequency, is observed at 3 MPa effective stress, while at 10 MPa effective stress the measured attenuation is negligible. This observation is consistent with wave‐induced fluid flow associated with mesoscopic compressibility contrasts in the sample's frame. These variations in compressibility could be due to fractures and/or compaction bands that formed between separate sets of forced‐oscillation experiments in response to the applied stresses. The agreement of the measured frequency‐dependent attenuation and Young's modulus with the Kramers–Kronig relations and additional data analyses indicate the good quality of the measurements. Our observations point to the complex interplay between structural and fluid heterogeneities on the measured seismic attenuation and they illustrate how these heterogeneities can facilitate the dominance of one attenuation mechanism over another.  相似文献   

3.
The elastic moduli of four sandstone samples are measured at seismic (2?2000 Hz) and ultrasonic (1 MHz) frequencies and water- and glycerin-saturated conditions. We observe that the high-permeability samples under partially water-saturated conditions and the low-permeability samples under partially glycerin-saturated conditions show little dispersion at low frequencies (2?2000 Hz). However, the high-permeability samples under partially glycerin-saturated conditions and the low-permeability samples under partially water-saturated conditions produce strong dispersion in the same frequency range (2?2000 Hz). This suggests that fluid mobility largely controls the pore-fluid movement and pore pressure in a porous medium. High fluid mobility facilitates pore-pressure equilibration either between pores or between heterogeneous regions, resulting in a low-frequency domain where the Gassmann equations are valid. In contrast, low fluid mobility produces pressure gradients even at seismic frequencies, and thus dispersion. The latter shows a systematic shift to lower frequencies with decreasing mobility. Sandstone samples showed variations in Vp as a function of fluid saturation. We explore the applicability of the Gassmann model on sandstone rocks. Two theoretical bounds for the P-velocity are known, the Gassmann–Wood and Gassmann–Hill limits. The observations confirm the effect of wave-induced flow on the transition from the Gassmann–Wood to the Gassmann–Hill limit. With decreasing fluid mobility, the P-velocity at 2–2000 Hz moves from the Gassmann–Wood boundary to the Gassmann–Hill boundary. In addition,, we investigate the mechanisms responsible for this transition.  相似文献   

4.
碳酸盐岩孔隙结构类型复杂多样,当地震波经过含有不同孔隙结构的流体饱和岩石后往往会产生不同的波频散和衰减特征,这使得根据波的不同响应特征来推断碳酸盐岩的孔隙结构类型,甚至孔隙流体性质信息成为可能.本文针对白云岩、灰岩以及人工碳酸盐岩样品开展了跨频段(超声+低频)实验测量和理论建模,探索碳酸盐岩的孔隙结构类型和孔隙流体对模量频散和衰减的影响机制.首先根据铸体薄片、扫描电镜的图像对碳酸盐岩样品进行了孔隙结构类型分析,并将样品主要分为裂缝型、裂缝-孔隙型、孔洞型三类,然后测量了相应样品完全饱和流体后在不同围压下的模量频散与衰减.在完全饱和甘油并处于低围压时,裂缝型与孔洞型样品均出现一个衰减峰,分别位于1 Hz与100 Hz附近,而裂缝-孔隙型样品则具有两个衰减峰,一个在1 Hz附近,另一个在100 Hz附近.裂缝型样品(裂缝主导)的衰减峰相比孔洞型样品(中等刚度孔隙主导)对应的衰减峰在低围压下幅度更大,且对围压变化更敏感.在测量数据的基础上,建立了考虑纵横比分布的软孔隙和中等刚度孔隙的喷射流模型,认为该模型能一定程度上解释裂缝型、裂缝-孔隙型、孔洞型三种类型碳酸盐岩在测量频带的频散.以上研究加深了对不同孔隙类型主导的碳酸盐岩储层地震响应特征的认识,对储层预测工作的进一步精细化具有重要意义.  相似文献   

5.
饱和岩石的各向异性及非线性黏弹性响应   总被引:25,自引:2,他引:25       下载免费PDF全文
在MTS伺服压机上对不同饱和状态的砂岩、大理岩标本进行了垂直层理和平行层理两个方向的正弦波加载试验,研究了饱和岩石的各向异性及非线性黏弹性行为. 在最大载荷低于岩石的屈服点时,获得的衰减、杨氏模量、泊松比、波速都表现出显著的各向异性,同时它们还具有较明显的应变振幅效应和频率效应. 随着应变振幅的增大,衰减近似呈线性增长,杨氏模量和泊松比近似呈线性下降. 在0.005-4Hz频段内除衰减不明显依赖频率以外,杨氏模量、泊松比、波速对频率的依赖性都较强; 当频段扩大到15Hz时,这4个参数都表现出较强的频率效应. 饱和岩石的衰减、杨氏模量、泊松比、波速均随饱和液体的黏滞系数增大而增大.  相似文献   

6.
为了研究含气地层对地震波传播的影响,在地层温压条件下,用超声波测试了长庆油田苏里格气田砂岩样品在不同饱和度下的纵、横波速度和衰减Q值.实验表明砂岩样品的物性和流体含量对纵波的速度和衰减的影响均大于横波,含气饱和度大于60%时纵波Q值变化明显;物性越好,含气饱和度越高,纵波Q值越小,吸收越大.分析实验结果和相应的影响机理,给出了利用纵波的吸收衰减预测砂岩含气性的应用实例.  相似文献   

7.
Fluid pressure diffusion occurring on the microscopic scale is believed to be a significant source of intrinsic attenuation of mechanical waves propagating through fully saturated porous rocks. The so-called squirt flow arises from compressibility heterogeneities in the microstructure of the rocks. To study squirt flow experimentally at seismic frequencies the forced oscillation method is the most adequate, but such studies are still scarce. Here we present the results of forced hydrostatic and axial oscillation experiments on dry and glycerine-saturated Berea sandstone, from which we determine the dynamic stiffness moduli and attenuation at micro-seismic and seismic frequencies (0.004–30 Hz). We observe frequency-dependent attenuation and the associated moduli dispersion in response to the drained–undrained transition (∼0.1 Hz) and squirt flow (>3 Hz), which are in fairly good agreement with the results of the corresponding analytical solutions. The comparison with very similar experiments performed also on Berea sandstone in addition shows that squirt flow can potentially be a source of wave attenuation across a wide range of frequencies because of its sensitivity to small variations in the rock microstructure, especially in the aspect ratio of micro-cracks or grain contacts.  相似文献   

8.
Ultrasonic compressional‐ and shear‐wave velocities have been measured on 34 samples of sandstones from hydrocarbon reservoirs. The sandstones are all of low clay content, high porosity, and cover a wide range of permeabilities. They were measured dry and brine‐saturated under hydrostatic effective stresses of 10, 20 and 40 MPa. For eight of the sandstones, ultrasonic velocity measurements were made at different partial water saturations in the range from dry to fully saturated. The Gassmann–Biot theory is found to account for most of the changes in velocities at high effective stress levels when the dry sandstones are fully saturated with brine, provided the lower velocities resulting when the dry sandstone initially adsorbs small amounts of moisture are used to determine the elastic properties of the ‘dry’ sandstone. At lower effective stress levels, local flow phenomena due to the presence of open microcracks are assumed to be responsible for measured velocities higher than those predicted by the theory. The partial saturation results are modelled fairly closely by the Gassmann–Biot theory, assuming heterogeneous saturation for P‐waves.  相似文献   

9.
Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1–100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10?6–8 × 10?6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10?6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10?6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.  相似文献   

10.
We measured in the laboratory ultrasonic compressional and shear‐wave velocity and attenuation (0.7–1.0 MHz) and low‐frequency (2 Hz) electrical resistivity on 63 sandstone samples with a wide range of petrophysical properties to study the influence of reservoir porosity, permeability and clay content on the joint elastic‐electrical properties of reservoir sandstones. P‐ and S‐wave velocities were found to be linearly correlated with apparent electrical formation factor on a semi‐logarithmic scale for both clean and clay‐rich sandstones; P‐ and S‐wave attenuations showed a bell‐shaped correlation (partial for S‐waves) with apparent electrical formation factor. The joint elastic‐electrical properties provide a way to discriminate between sandstones with similar porosities but with different clay contents. The laboratory results can be used to estimate sandstone reservoir permeability from seismic velocity and apparent formation factor obtained from co‐located seismic and controlled source electromagnetic surveys.  相似文献   

11.
We conducted a laboratory study of the joint elastic‐electrical properties of sixty‐three brine‐saturated sandstone samples to assess the likely impact of differential pressure (confining minus pore fluid pressures) in the range 8–60 MPa on the joint interpretation of marine seismic and controlled‐source electromagnetic survey data. The samples showed a wide range of petrophysical properties representative of most sandstone reservoirs. We found that a regression equation comprising both a constant and an exponential part gave a good fit to the pressure dependence of all five measured geophysical parameters (ultrasonic P‐ and S‐wave velocity, attenuation and electrical resistivity). Electrical resistivity was more pressure‐sensitive in clay‐rich sandstones with higher concentrations of low aspect ratio pores and micropores than in clean sandstones. Attenuation was more pressure‐sensitive in clean sandstones with large open pores (macropores) than in clay‐rich sandstones. Pore shape did not show any influence on the pressure sensitivity of elastic velocity. As differential pressure increases, the effect of the low aspect ratio pores and micropores on electrical resistivity becomes stronger than the effect of the macropores on attenuation. Further analysis of correlations among the five parameters as a function of pressure revealed potentially diagnostic relationships for geopressure prediction in reservoir sandstones.  相似文献   

12.
Compressional and shear-wave velocities have been measured and a novel approach using digital processing employed to study wave attenuation for brine- and gas- saturated sandstones, over a range of effective stresses from 5 to 60 MPa. Also measured were the complex conductivity in the brine-saturated state and permeability in the gas-saturated state over the same range of stresses as for the velocity measurements. Broadband ultrasonic pulses of P- and orthogonally polarized S-waves in the frequency range 0.3–0.8 MHz are transmitted through the specimen to be characterized for comparison with a reference (aluminium) having low attenuation. The attenuation is calculated in terms of the quality factor Q from the Fourier spectral ratios, using the frequency spectral ratios technique. The corrections necessary for the effects of diffraction due to the finite size of the ultrasonic transducers have been carried out for the case of measurements under lower confining stress. To interpret the laboratory measured velocity and attenuation data under the physical conditions of this study and to estimate the effects of pore structure, numerical modelling of velocities and attenuation as functions of the confining stress have been performed, based on the MIT model. Theoretical models based on several hypothesized attenuation mechanisms are considered in relation to laboratory data of the effects of confining pressure, fluid saturation and pore structure on attenuation. Numerical calculations using these models with the experimental data indicate that friction on thin cracks and grain boundaries is the dominant attenuation mechanism for dry and brine-saturated sandstones at low effective stresses for the frequencies tested. However, for brine-saturated sandstones at moderately high effective stresses, fluid flow could play a more important role in ultrasonic S-wave attenuation, depending on the pore structure of the sample.  相似文献   

13.
Wave‐induced oscillatory fluid flow in the vicinity of inclusions embedded in porous rocks is one of the main causes for P‐wave dispersion and attenuation at seismic frequencies. Hence, the P‐wave velocity depends on wave frequency, porosity, saturation, and other rock parameters. Several analytical models quantify this wave‐induced flow attenuation and result in characteristic velocity–saturation relations. Here, we compare some of these models by analyzing their low‐ and high‐frequency asymptotic behaviours and by applying them to measured velocity–saturation relations. Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in an isotropic rock matrix is compared with White's and Johnson's models of patchy saturation. The modeling of laboratory data for tight sandstone and limestone indicates that, by selecting appropriate inclusion size, the Biot‐Rayleigh predictions are close to the measured values, particularly for intermediate and high water saturations.  相似文献   

14.
The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the Q factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.  相似文献   

15.
致密砂岩储层普遍具有孔隙度低、微裂隙发育的特点,岩石内部常含有强烈的结构非均质性.致密砂岩发育的微裂隙使储层具有良好的连通性,促成高饱和气的天然气成藏.针对川西某探区须家河组高含气饱和度致密砂岩,本文选取致密砂岩岩心样本,进行了不同围压下的超声波实验测量.考虑储层完全饱气情况下的粒间孔隙、微裂隙双重孔隙结构,采用Biot-Rayleigh双重孔隙方程,构建致密砂岩岩石物理模型,进而分析了裂隙含量对纵波频散和衰减的影响.基于地震波衰减,构建了致密砂岩多尺度岩石物理图板.采用谱比法和改进频移法估算致密砂岩样本及储层衰减,对超声和地震频带下的图板进行校正.将校正后的图板应用到研究工区,选取二维测线和三维区块,进行储层孔隙度和裂隙含量的定量预测.对比实际资料进行分析,结果显示,本文预测的孔隙度和裂隙含量与三口测井的孔隙度曲线和实际产气情况基本吻合,基于孔隙-裂隙衰减岩石物理模型有效地预测了优质储层的分布区域.  相似文献   

16.
We obtain the wave velocities and quality factors of clay‐bearing sandstones as a function of pore pressure, frequency and partial saturation. The model is based on a Biot‐type three‐phase theory that considers the coexistence of two solids (sand grains and clay particles) and a fluid mixture. Additional attenuation is described with the constant‐Q model and viscodynamic functions to model the high‐frequency behaviour. We apply a uniform gas/fluid mixing law that satisfies the Wood and Voigt averages at low and high frequencies, respectively. Pressure effects are accounted for by using an effective stress law. By fitting a permeability model of the Kozeny– Carman type to core data, the model is able to predict wave velocity and attenuation from seismic to ultrasonic frequencies, including the effects of partial saturation. Testing of the model with laboratory data shows good agreement between predictions and measurements.  相似文献   

17.
A direct detection of hydrocarbons is used by connecting increased attenuation of seismic waves with oil and gas fields. This study analyzes the seismic attenuation of P- and S-waves in one tight sandstone gas reservoir and attempts to give the quantitative distinguishing results of gas and water by the characteristics of the seismic attenuation of P- and S-waves. The Hilbert–Huang Transform (HHT) is used to better measure attenuation associated with gas saturation. A formation absorption section is defined to compute the values of attenuation using the common frequency sections obtained by the HHT method. Values of attenuation have been extracted from three seismic sections intersecting three different wells: one gas-saturated well, one fully water-saturated well, and one gas- and water- saturated well. For the seismic data from the Sulige gas field located in northwest Ordos Basin, China, we observed that in the gas-saturated media the S-wave attenuation was very low and much lower than the P-wave attenuation. In the fully water-saturated media the S-wave attenuation was higher than the P-wave attenuation. We suggest that the joint application of P- and S-wave attenuation can improve the direct detection between gas and water in seismic sections. This study is hoped to be useful in seismic exploration as an aid for distinguishing gas and water from gas- and water-bearing formations.  相似文献   

18.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   

19.
含流体砂岩地震波频散实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究孔隙流体对不同渗透率岩石地震波速度的影响,在实验室利用跨频带岩石弹性参数测试系统得到了应变幅值10-6的2~2000Hz频段下的地震波速度和1 MHz频率下的超声波速度,利用差分共振声谱法得到了频率600Hz岩石干燥和完全饱水情况下岩石声学参数.实验表明,在低饱和度下,致密砂岩在地震和超声频段下没有明显的频散;在高饱和度下纵波速度的频散变得明显.从干燥到完全水饱和条件,不同频率测量的致密砂岩的体积模量随岩石孔隙度增高而降低,且体积模量的变化量受岩石微观孔隙结构的影响较大.高孔、高渗砂岩无论在低含水度下还是在高含水饱和度下频散微弱,并且在地震频段下围压对于岩石纵横波速度的影响要大于频率的影响.高孔、高渗砂岩和致密砂岩不同含水饱和度下的频散差异可应用于储层预测,油气检测等方面,同时该研究可以更好地帮助理解岩石的黏弹性行为,促进岩石物理频散理论的发展,提高地震解释的精度.  相似文献   

20.
To provide a guide for future deep (<1.5 km) seismic mineral exploration and to better understand the nature of reflections imaged by surface reflection seismic data in two mining camps and a carbonatite complex of Sweden, more than 50 rock and ore samples were collected and measured for their seismic velocities. The samples are geographically from the northern and central parts of Sweden, ranging from metallic ore deposits, meta‐volcanic and meta‐intrusive rocks to deformed and metamorphosed rocks. First, ultrasonic measurements of P‐ and S‐wave velocities at both atmospheric and elevated pressures, using 0.5 MHz P‐ and S‐wave transducers were conducted. The ultrasonic measurements suggest that most of the measured velocities show positive correlation with the density of the samples with an exception of a massive sulphide ore sample that shows significant low P‐ and S‐wave velocities. The low P‐ and S‐wave velocities are attributed to the mineral texture of the sample and partly lower pyrite content in comparison with a similar type sample obtained from Norway, which shows significantly higher P‐ and S‐wave velocities. Later, an iron ore sample from the central part of Sweden was measured using a low‐frequency (0.1–50 Hz) apparatus to provide comparison with the ultrasonic velocity measurements. The low‐frequency measurements indicate that the iron ore sample has minimal dispersion and attenuation. The iron ore sample shows the highest acoustic impedance among our samples suggesting that these deposits are favourable targets for seismic methods. This is further demonstrated by a real seismic section acquired over an iron ore mine in the central part of Sweden. Finally, a laser‐interferometer device was used to analyse elastic anisotropy of five rock samples taken from a major deformation zone in order to provide insights into the nature of reflections observed from the deformation zone. Up to 10% velocity‐anisotropy is estimated and demonstrated to be present for the samples taken from the deformation zone using the laser‐interferometery measurements. However, the origin of the reflections from the major deformation zone is attributed to a combination of anisotropy and amphibolite lenses within the deformation zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号