共查询到20条相似文献,搜索用时 15 毫秒
1.
为了对南海海域的前新生代残留盆地分布有个整体而全面的认识,本文开展了南海残留盆地宏观分布的综合地球物理研究.通过岩石物性分析,综合重、磁、震等地球物理方法,利用正演与反演方法,分区计算并求取了南海的重力基底和磁性基底埋深,得到了中生界及前中生界残余厚度,给出了整个南海前新生代残留盆地的宏观格架与残余厚度分布特征并讨论了前新生代油气前景.研究结果表明南海东北部的东沙隆起和潮汕坳陷、台西南盆地和北港隆起、南部的礼乐滩地区等应具有较好的前新生代油气资源潜力. 相似文献
2.
Nowadays, geostatistics is commonly applied for numerous gridding or modelling tasks. However, it is still under used and unknown for classical geophysical applications. This paper highlights the main geostatistical methods relevant for geophysical issues, for instance to improve the quality of seismic data such as velocity cubes or interpreted horizons. These methods are then illustrated through four examples. The first example, based on a gravity survey presents how a geostatistical interpolation can be used to filter out a global trend, in order to better define real anomalies. In the second case study, dedicated to refraction surveying, geostatistical filtering is used to filter out acquisition artefacts and identify the main geological structures. The third one is an example of porosity being integrated geostatistically with a seismic acoustic impedance map. The last example deals with geostatistical time to depth conversion; the interest of performing geostatistical simulations is finally discussed. 相似文献
3.
Successful development of geodetic satellite missions has aroused new interest in determining global and regional gravity
field based on satellite data. Satellite altimetry data enable direct determination of the geoid over sea regions.
In Egypt, where land and marine geophysical data are inadequate because of rough topography and economic reasons, the use
of satellite altimetry data is of special importance.
The northern Red Sea region has been selected as a site for case study of the current research, after applying spectral analysis
to reveal near-surface structure, the residual geoid of the studied region shows a good correlation with the known geologic
features. Moreover, satellite-based gravity data enhance small-scale features and agrees well with land and marine gravity
data. Thus, geoid undulation and satellite gravity data can be a complementary source of data to determine near-surface and
deep structures. 相似文献
4.
From our interpretation of the Bouguer gravity and aeromagnetic anomalies in south-east Scotland, we conclude that a massive granite batholith underlies the greater part of the eastern Southern Uplands. The granite model which we computed earlier from gravity anomalies in the Tweeddale area fits the observed magnetic anomalies closely, if a normal magnetization of 0.095 A m –1 is assigned, similar to values found for exposed local granites. Further gravity modelling shows that, apart from the Tweeddale boss, the granite shallows to less than 1 km near Lammer Law in East Lothian and extends north of the Lammermuir Fault. A model for the East Lothian volcanics was computed from their aeromagnetic anomalies, then their gravitational effect was combined with that estimated for the Devonian and Carboniferous sediments and the result stripped off the observed gravity field. The residual gravity anomalies were used to generate a two-dimensional model for the granite north of the Lammermuir Fault. The expected tectonic consequences of a massive granite batholith in the eastern Southern Uplands are compared with the known development of faults and sedimentary basins around its margins. 相似文献
5.
Interpretation of magnetic data can be carried out either in the space or frequency domain. The interpretation in the frequency domain is computationally convenient because convolution becomes multiplication. The frequency domain approach assumes that the magnetic sources distribution has a random and uncorrelated distribution. This approach is modified to include random and fractal distribution of sources on the basis of borehole data. The physical properties of the rocks exhibit scaling behaviour which can be defined as P( k) = Ak?β, where P(k) is the power spectrum as a function of wave number (k), and A and β are the constant and scaling exponent, respectively. A white noise distribution corresponds to β = 0. The high resolution methods of power spectral estimation e.g. maximum entropy method and multi‐taper method produce smooth spectra. Therefore, estimation of scaling exponents is more reliable. The values of β are found to be related to the lithology and heterogeneities in the crust. The modelling of magnetic data for scaling distribution of sources leads to an improved method of interpreting the magnetic data known as the scaling spectral method. The method has found applicability in estimating the basement depth, Curie depth and filtering of magnetic data. 相似文献
6.
In this paper, we introduce a new method of geophysical data interpretation based on simultaneous analysis of images and sounds. The final objective is to expand the interpretation workflow through multimodal (visual–audio) perception of the same information. We show how seismic data can be effectively converted into standard formats commonly used in digital music. This conversion of geophysical data into the musical domain can be done by applying appropriate time–frequency transforms. Using real data, we demonstrate that the Stockwell transform provides a very accurate and reliable conversion. Once converted into musical files, geophysical datasets can be played and interpreted by using modern computer music tools, such as sequencers. This approach is complementary and not substitutive of interpretation methods based on imaging. It can be applied not only to seismic data but also to well logs and any type of geophysical time/depth series. To show the practical implications of our integrated visual–audio method of interpretation, we discuss an application to a real seismic dataset in correspondence of an important hydrocarbon discovery. 相似文献
7.
Current models for unconformity‐associated uranium deposits predict fluid flow and ore deposition along reactivated faults in >1.76 Ga basement beneath Mesoproterozoic siliciclastic basins. In frontier regions such as the Thelon Basin in the Kivalliq region of Nunavut, little is known about the sub‐basin distribution of units and structures, making exploration targeting very tenuous. We constructed a geological map of the basement beneath the unconformity by extrapolating exposed features into the subsurface. The new map is constrained by detailed geological, geophysical, and rock property observations of outcrops adjacent to the basin and by aeromagnetic and gravity data over the geophysically transparent sedimentary basin. From rock property measurements, it is clear that the diverse magnetic and density characteristics of major rock packages provide quantitative three‐dimensional constraints. Gravity profiles forward modelled in four cross sections define broad synforms of the Amer Belt and Archean volcanic rocks that are consistent with the structural style outside the basin. Major lithotectonic entities beneath the unconformity include: supracrustal rocks of the Archean Woodburn Lake group and Marjorie Hills meta sedimentary gneiss and associated mixed granitoid and amphibolitic gneiss; the Amer Mylonite Zone and inferred mafic intrusions oriented parallel and sub‐parallel; other igneous intrusions of 2.6 Ga, 1.83 Ga, and 1.75 Ga vintage; and the <2.3 Ga to >1.84 Ga Amer Group. Four main brittle regional fault arrays (040°–060°, 075°–90°, 120°, and 150°) controlled development and preservation of the basin. The reactivated intersections of such faults along fertile basement units such as the Rumble assemblage, Marjorie Hills assemblage, Nueltin igneous rocks, and Pitz formation are the best targets for uranium exploration. 相似文献
8.
勘查区内主要研究隐伏大理岩捕虏体的分布规律和物化探异常特征,对有成矿地质背景条件的物化探异常进行验证,寻找发现赋存于石英闪长岩中的隐伏大理岩残留体,并对其含矿性进行评价.在对勘查区内重力原始数据进行处理的基础上,对重力场进行了包括区域场与剩余场的分离、小波多尺度分解、延拓等方面的处理,共圈定局部重力异常13个,重点选取两处异常布设了5条重力、磁法、激电中梯和激电测深精测剖面,以查明异常在纵向上的延展情况及性质.在ZP01、ZP02、ZP03三条剖面上均发现较好的激电异常,异常特征呈现低阻高极化和高阻高极化两种,经钻孔验证低阻高极化异常是由矿化蚀变叠加岩性破碎引起.高阻高极化异常推测为不同期次的石英闪长岩叠加矽卡岩化大理岩俘虏体所引起. 相似文献
9.
交叉梯度联合反演方法通过对多种地球物理模型实现结构耦合,在岩石物性关系不确定的情况下,既能提高反演结果的可靠性,又能减少反演的多解性,还能减少不同方法解释结果之间的矛盾.当不同的模型观测数据覆盖范围不一致时,交叉梯度联合反演通常需要取出重叠区域数据进行联合反演,并且建模时还要扩展一些模型范围.本文首先提出并实现了部分区域约束下的交叉梯度多重地球物理数据联合反演算法;接着进行了算法的模型试算;最后,我们将该反演算法用于本溪-集安深部地质调查重磁电综合地质地球物理解释中.结果表明:该算法不但能在重叠区域内很好地恢复结构相似的模型,而且在非重叠区域与重叠区域的边界处仍然可以得到平滑变化的模型;在本溪-集安10号剖面所获得的结构上相似的电阻率、密度及磁化率模型较好地反映了该区的深部地质结构,对于确定深部地质体的性质提供了有力的证据. 相似文献
10.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm 3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm 3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area. 相似文献
11.
根据重力地质法(GGM),利用南中国海海域内63179个船测控制点水深将测高自由空间重力异常划分为长波参考场和短波残差场,并反演出了该海域112°E—119°E,12°N—20°N范围的1’×1’海底地形模型,该过程中使用的海水和海底洋壳密度差异常数1.32 g·cm-3通过实测水深估计得到.利用反演得到的GGM模型对剩余的10529个检核点船测水深插值计算后与实测水深进行比较,其较差结果的均值为-1.64 m,标准差为76.95 m,相对精度为4.06%.此外,根据船测点数量、分布和海底地形的不同,选择了三个海域进行统计,结果表明:在船测控制点分布均匀的海域,GGM模型精度优于ETOPO1模型,在控制点过于分散的海域其精度会有所下降,但好于船测水深的直接格网化结果.为进一步探究检核点的较差结果中出现较大数值的成因,本文对精度较差的点位进行了单独分析,选择了两条船测航迹剖面进行了研究,并分析了检核点的水深较差、相对精度与水深和重力异常的关系,结果表明:GGM模型精度受水深和重力异常的相关性影响较小,受海底地形复杂程度影响较大,地形坡度变化平缓海域的预测精度明显高于海山地区.最后,综合GGM模型和ETOPO1模型优势,利用所有船测水深作为控制,生成了综合的海底地形模型. 相似文献
12.
本文融合SIO(Scripps Institution of Oceanography)发布的垂线偏差、重力异常和垂直重力梯度数据及NCEI(National Centers for Environmental Information)发布的船载测深数据, 利用多层感知机神经网络(Multi-Layer Perceptron, MLP)建立南海海域(108°E—121°E, 6°N—23°N)分辨率为1'×1'的海底地形模型(MLP_Depth).首先, 将642716个船载测深控制点的位置信息与周围4'×4'格网点处的地球重力信息(垂线偏差、重力异常、垂直重力梯度)作为输入数据, 将船载测深控制点处实测水深值作为输出数据, 训练MLP神经网络模型, 训练结束时决定系数R2为99%, 平均绝对误差MAE为39.33 m.然后, 将研究区域内1'×1'格网正中心点处的输入数据输入于MLP模型中, 可得格网正中心点处的预测海深值.最后, 根据预测海深值建立研究区域范围内分辨率为1'×1'的MLP_Depth模型.将MLP_Depth模型预测水深与160679个检核点处实测水深对比, 其差值的标准差STD(75.38 m)、平均绝对百分比误差MAPE(5.89%)与平均绝对误差MAE(42.91 m)皆优于GEBCO_2021模型、topo_23.1模型、ETOPO1模型与检核点实测水深差值的STD(108.88 m、113.41 m、229.67 m)、MAPE(6.11%、6.94%、18.37%)与MAE(47.33 m、52.24 m、130.08 m).同时, 为了研究不同区域内利用该方法建立的海底地形模型的精度, 本文在研究区域内分别建立了A、B区域的海底地形模型(MLP_Depth_A、MLP_Depth_B).经过验证得: MLP_Depth_A、MLP_Depth_B相比于MLP_Depth模型具有更高的精度, 更能反应海底地形的变化趋势. 相似文献
13.
Geological interpretation based on gravity gradiometry data constitutes a very challenging problem. Rigorous 3D inversion is the main technique used in quantitative interpretation of the gravity gradiometry data. An alternative approach to the quantitative analysis of the gravity gradiometry data is based on 3D smooth potential field migration. This rapid imaging approach, however, has the shortcomings of providing smooth images since it is based on direct integral transformation of the observed gravity tensor data. Another limitation of migration transformation is related to the fact that, in a general case, the gravity data generated by the migration image do not fit the observed data well. In this paper, we describe a new approach to rapid imaging that allows us to produce the density distribution which adequately describes the observed data and, at the same time, images the structures with anomalous densities having sharp boundaries. This approach is based on the basic theory of potential field migration with a focusing stabilizer in the framework of regularized scheme, which iteratively transfers the observed gravity tensor field into an image of the density distribution in the subsurface formations. The results of gravity migration can also be considered as an a priori model for conventional inversion subsequently. We demonstrate the practical application of migration imaging using both synthetic and real gravity gradiometry data sets acquired for the Nordkapp Basin in the Barents Sea. 相似文献
14.
Window‐based Euler deconvolution is commonly applied to magnetic and sometimes to gravity interpretation problems. For the deconvolution to be geologically meaningful, care must be taken to choose parameters properly. The following proposed process design rules are based partly on mathematical analysis and partly on experience. 相似文献
15.
Summary The paper discusses geophysical phenomena observed over tholeiitic dykes detected in the Eastern Desert of Egypt (Nubian Block). The dykes show specific physical properties and are either normally or reversely polarized along their whole length over 120 km. Dykes of similar properties may also be interpreted from airborne geophysical maps in Saudi Arabia (Arabian Block). Magnetic fields of the tholeiitic dykes were interpreted quantitatively: they fit the magnetic pattern over the Red Sea. The study emphasizes those geophysical phenomena which may serve as criteria for recognition of regions with rift tectonics development. 相似文献
16.
根据高分辨率重、磁测网数据的分析,结合多波束海底地貌的构造解释,南海海盆新生代经历了两期不同动力特征的海底扩张,25 Ma的沉积-构造事件是其重要分界.早期扩张从约33.5 Ma开始至25 Ma停止,在东部海盆南、北两侧和西北海盆形成了具有近E-W向或NEE向磁条带的老洋壳,是近NNW-SSE向扩张的产物;晚期扩张从25 Ma开始至16.5 Ma结束,在东部海盆中央区和西南海盆形成了具有NE向磁条带的新洋壳,是NW-SE向扩张的产物.南海海盆分区特点明显,南北分区,东西分段.从南到北可进一步分为3个亚区,南、北亚区由早期扩张产生,而晚期扩张的中央亚区从东到西又可进一步分为6个洋段,中间均由NNW或NW向断裂分割,是扩张中脊分段性的表现.南海晚期扩张具有渐进式扩张的特点,虽然它们均于磁条带异常C5c停止扩张,但开始扩张的时间从东部的C6c(23.5 Ma),到中部的C6b(22.8 Ma),一直变新到西部的C5e(18.5 Ma).东部海盆与西南海盆之间的NNW向断裂是分割两海盆的边界断裂,不仅切割了磁条带异常,控制了两海盆不同的地球物理场特征,而且还使扩张中脊左行平移约95km,造成扩张中心和磁条带不连续.南海海盆扩张期间,其东部没有菲律宾群岛封闭,当时是一个面向大洋的港湾,与亚丁湾洋盆可以对比,是洋中脊向大陆边缘入侵的产物. 相似文献
17.
由于解析信号具有不受(二维) 或少受磁化方向影响,能够较好反映磁性体边界的特性, 因此受到人们的重视. 欧拉反褶积法可以确定场源的位置和深度以及形状因子,具有较强的适应性. 因此前人提出将二者相结合的方法.针对前人提出的方法中存在受高频干扰严重的问题,本文提出低阶的欧拉反褶积与解析信号相结合的位场反演方法.本方法在反演中只需计算磁异常的一、二阶导数,这样能够将高频噪声的干扰减少到人们可以控制的水平.文中详细推导了反演计算公式.模型计算证明了方法的正确性,同时探讨了噪声和邻近磁性体干扰影响的问题.对安徽庐江—枞阳火山岩盆地磁异常反演计算的结果证实了方法的实用性.本方法也可以应用于重力异常的反演计算中. 相似文献
18.
The tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on the age of the lithosphere beneath basins of various origins in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded an age of 65 Ma (the Cretaceous-Paleocene boundary) for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of the Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat fluxes in the Akademii Nauk Rise, underlain by a thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with a high negative gradient of gravity anomalies in this area. Calculations yielded an age of 36 Ma (the Early Oligocene) and a lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of backarc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that the formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for the determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (the Early Miocene) for the Deryugin basin, 12 Ma (the Middle Miocene) for the TINRO basin, and 23 Ma (the Late Oligocene) for the West Kamchatka trough. These estimates agree with the formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO basins and the West Kamchatka trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka trough possesses better reservoir properties compared to the TINRO and Deryugin basins. The latter is promising for the generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the basis of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data. 相似文献
19.
The Caspian Sea (CS), the world's largest inland sea, may also be considered as large-scale limnic system. Due to strong fluctuations of its water level during the 20th century and the flooding of vast areas in a highly vulnerable coastal zone, economic and environmental risk potentials have to be considered. Since the major water input into the CS is attributed to the Volga river, the understanding of its long-term flow process is necessary for an appropriate risk assessment for the CS and its coastal area. Therefore, a top-down approach based on statistical analyses of long-term Volga flow series is pursued. For the series of annual mean flow (MQ) of the Volga river basin during the 20th century, a complex oscillation pattern was identified. Analyses for multiple gauges in the Volga river basin and Eurasian reference basins revealed that this oscillation pattern resulted from the superposition of oscillations with periods of ∼30 years (MQ) in the western part of the Volga river basin, and ∼14 years (flow volume of snowmelt events) and ∼20 years (flow volume of summer and autumn) in the eastern part of the Volga river basin (Kama river basin). Almost synchronous minima or maxima of these oscillations occurred just in the periods of substantial changes of the Caspian Sea level (CSL). It can thus be assumed that the described mechanism is fundamental for an understanding of the CSL development during the 20th century. Regarding the global climate change, it is still difficult to predict reliably the development of the CSL for the 21st century. Consequently, we suggest an ongoing, interdisciplinary research co-operation among climatology, hydrology, hydraulics, ecology and spatial data management. 相似文献
20.
There is no meta‐heuristic approach best suited for solving all optimization problems making this field of study highly active. This results in enhancing current approaches and proposing new meta‐heuristic algorithms. Out of all meta‐heuristic algorithms, swarm intelligence is preferred as it can preserve information about the search space over the course of iterations and usually has fewer tuning parameters. Grey Wolves, considered as apex predators, motivated us to simulate Grey Wolves in the optimization of geophysical data sets. The grey wolf optimizer is a swarm‐based meta‐heuristic algorithm, inspired by mimicking the social leadership hierarchy and hunting behaviour of Grey Wolves. The leadership hierarchy is simulated by alpha, beta, delta and omega types of wolves. The three main phases of hunting, that is searching, encircling and attacking prey, is implemented to perform the optimization. To evaluate the efficacy of the grey wolf optimizer, we performed inversion on the total gradient of magnetic, gravity and self‐potential anomalies. The results have been compared with the particle swarm optimization technique. Global minimum for all the examples from grey wolf optimizer was obtained with seven wolves in a pack and 2000 iterations. Inversion was initially performed on thin dykes for noise‐free and noise‐corrupted (up to 20% random noise) synthetic data sets. The inversion on a single thin dyke was performed with a different search space. The results demonstrate that, compared with particle swarm optimization, the grey wolf optimizer is less sensitive to search space variations. Inversion of noise‐corrupted data shows that grey wolf optimizer has a better capability in handling noisy data as compared to particle swarm optimization. Practical applicability of the grey wolf optimizer has been demonstrated by adopting four profiles (i.e. surface magnetic, airborne magnetic, gravity and self‐potential) from the published literature. The grey wolf optimizer results show better data fit than the particle swarm optimizer results and match well with borehole data. 相似文献
|