共查询到20条相似文献,搜索用时 0 毫秒
1.
Acoustic transversely isotropic models are widely used in seismic exploration for P‐wave processing and analysis. In isotropic acoustic media only P‐wave can propagate, while in an acoustic transversely isotropic medium both P and S waves propagate. In this paper, we focus on kinematic properties of S‐wave in acoustic transversely isotropic media. We define new parameters better suited for S‐wave kinematics analysis. We also establish the travel time and relative geometrical spreading equations and analyse their properties. To illustrate the behaviour of the S‐wave in multi‐layered acoustic transversely isotropic media, we define the Dix‐type equations that are different from the ones widely used for the P‐wave propagation. 相似文献
2.
In an acoustic transversely isotropic medium, there are two waves that propagate. One is the P-wave and another one is the S-wave (also known as S-wave artefact). This paper is devoted to analyse the S-wave in two-dimensional acoustic transversely isotropic media with a tilted symmetry axis. We derive the S-wave slowness surface and traveltime function in a homogeneous acoustic transversely isotropic medium with a tilted symmetry axis. The S-wave traveltime approximations in acoustic transversely isotropic media with a tilted symmetry axis can be mapped from the counterparts for acoustic transversely isotropic media with a vertical symmetry axis. We consider a layered two-dimensional acoustic transversely isotropic medium with a tilted symmetry axis to analyse the S-wave moveout. We also illustrate the behaviour of the moveout for reflected S-wave and converted waves. 相似文献
3.
Simultaneous estimation of velocity gradients and anisotropic parameters from seismic reflection data is one of the main challenges in transversely isotropic media with a vertical symmetry axis migration velocity analysis. In migration velocity analysis, we usually construct the objective function using the l2 norm along with a linear conjugate gradient scheme to solve the inversion problem. Nevertheless, for seismic data this inversion scheme is not stable and may not converge in finite time. In order to ensure the uniform convergence of parameter inversion and improve the efficiency of migration velocity analysis, this paper develops a double parameterized regularization model and gives the corresponding algorithms. The model is based on the combination of the l2 norm and the non‐smooth l1 norm. For solving such an inversion problem, the quasi‐Newton method is utilized to make the iterative process stable, which can ensure the positive definiteness of the Hessian matrix. Numerical simulation indicates that this method allows fast convergence to the true model and simultaneously generates inversion results with a higher accuracy. Therefore, our proposed method is very promising for practical migration velocity analysis in anisotropic media. 相似文献
4.
In seismic data processing, serious problems could be caused by the existence of triplication and need to be treated properly for tomography and other inversion methods. The triplication in transversely isotropic medium with a vertical symmetry axis has been well studied and concluded that the triplicated traveltime only occurs for S wave and there is no triplication for P and converted PS waves since the P wave convexity slowness always compensates the S wave slowness concavity. Compared with the vertical symmetry axis model, the research of the triplication in transversely isotropic medium with a tilted symmetry axis is still keeping blank. In order to analyse the triplication for the converted wave in the tilted symmetry axis model, we examine the traveltime of the triplication from the curvature of averaged P and S wave slowness. Three models are defined and tested in the numerical examples to illustrate the behaviour of the tilted symmetry axis model for the triplicated traveltime with the change of the rotation angle. Since the orientation of an interface is related to the orientation of the symmetry axis, the triplicated traveltime is encountered for the converted wave in the tilted symmetry axis model assuming interfaces to be planar and horizontal. The triplicated region is influenced by the place and level of the concave curvature of the P and S wave slowness. 相似文献
5.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data. 相似文献
6.
Full waveform inversion using oriented time‐domain imaging method for vertical transverse isotropic media 下载免费PDF全文
Full waveform inversion for reflection events is limited by its linearised update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model and, thus, use a gradient given by the oriented time‐domain imaging method. Specifically, we apply the oriented time‐domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to two‐dimensional or three‐dimensional velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearised representations of the reflection response. To eliminate the crosstalk artifacts between different parameters, we utilise what we consider being an optimal parametrisation for this step. To do so, we extend the prestack time‐domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high‐wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method. 相似文献
7.
3D anisotropic waveform inversion could provide high-resolution velocity models and improved event locations for microseismic surveys. Here we extend our previously developed 2D inversion methodology for microseismic borehole data to 3D transversely isotropic media with a vertical symmetry axis. This extension allows us to invert multicomponent data recorded in multiple boreholes and properly account for vertical and lateral heterogeneity. Synthetic examples illustrate the performance of the algorithm for layer-cake and ‘hydraulically fractured’ (i.e. containing anomalies that simulate hydraulic fractures) models. In both cases, waveform inversion is able to reconstruct the areas which are sufficiently illuminated for the employed source-receiver geometry. In addition, we evaluate the sensitivity of the algorithm to errors in the source locations and to band-limited noise in the input displacements. We also present initial inversion results for a microseismic data set acquired during hydraulic fracturing in a shale reservoir. 相似文献
8.
多层垂直对称轴横向各向同性介质精确走时计算 总被引:1,自引:0,他引:1
给出了计算多层垂直对称轴横向各向同性(VTI)介质精确射线路径和走时的方法,所用的体波相速度公式、群速度公式和Snell定律都是严格的显式解析公式. 任意基本波的射线路径和走时计算问题都可以转化成一个等效的透射问题,再用文中的公式来计算,具体实现方法用一个多次波和一个首波的实例给出. 最后分别用精确公式和Thomsen近似公式计算了相同模型相同基本波的走时曲线. 比较两者计算结果可发现, 近似公式反复使用会使误差积累,同时揭示了近似公式适用范围的局限性,强调了使用近似公式需要注意其适用范围的重要性. 相似文献
9.
An approach to calculate the accurate ray paths and traveltimes in multi-layered VTI media (transversely isotropic media with a vertical symmetry axis) is proposed. The expressions of phase velocity, group velocity and Snell’s law used for computation are all explicit and exact. The calculation of ray paths and traveltimes for a given ele-mentary wave is equivalent to that of a transmission problem which is much easier to be treated with the formulae proposed. In the section of numerical examples, the proce... 相似文献
10.
In multi-parameter ray-based anisotropic migration/inversion, it is essential that we have an understanding of the scattering mechanism corresponding to parameter perturbations. Because the complex nonlinearity in the anisotropic inversion problem is intractable, the construction of true-amplitude linearized migration/inversion procedures is needed and important. By using the acoustic medium assumption for transversely isotropic media with a vertical axis of symmetry and representing the anisotropy with P-wave normal moveout velocity, Thomsen parameter δ and anelliptic parameter η, we formalize the linearized inverse scattering problem for three-dimensional pseudo-acoustic equations. Deploying the single-scattering approximation and an elliptically anisotropic background introduces a new linear integral operator that connects the discontinuous perturbation parameters with the multi-shot/multi-offset P-wave scattered data. We further apply the high-frequency asymptotic Green's function and its derivatives to the integral operator, and then the scattering pattern of each perturbation parameter can be explicitly presented. By naturally establishing a connection to generalized Radon transform, the pseudo-inverse of the integral operator can be solved by the generalized Radon transform inversion. In consideration of the structure of this pseudo-inverse operator, the computational implementation is done pointwise by shooting a fan of rays from the target imaging area towards the acquisition system. Results from two-dimensional numerical tests show amplitude-preserving images with high quality. 相似文献
11.
Analysis of different parameterisations of waveform inversion of compressional body waves in an elastic transverse isotropic Earth with a vertical axis of symmetry 下载免费PDF全文
In a multi‐parameter waveform inversion, the choice of the parameterisation influences the results and their interpretations because leakages and the tradeoff between parameters can cause artefacts. We review the parameterisation selection when the inversion focuses on the recovery of the intermediate‐to‐long wavenumbers of the compressional velocities from the compressional body (P) waves. Assuming a transverse isotropic medium with a vertical axis of symmetry and weak anisotropy, analytical formulas for the radiation patterns are developed to quantify the tradeoff between the shear velocity and the anisotropic parameters and the effects of setting to zero the shear velocity in the acoustic approach. Because, in an anisotropic medium, the radiation patterns depend on the angle of the incident wave with respect to the vertical axis, two particular patterns are discussed: a transmission pattern when the ingoing and outgoing slowness vectors are parallel and a reflection pattern when the ingoing and outgoing slowness vectors satisfy Snell's law. When the inversion aims at recovering the long‐to‐intermediate wavenumbers of the compressional velocities from the P‐waves, we propose to base the parameterisation choice on the transmission patterns. Since the P‐wave events in surface seismic data do not constrain the background (smooth) vertical velocity due to the velocity/depth ambiguity, the preferred parameterisation contains a parameter that has a transmission pattern concentrated along the vertical axis. This parameter can be fixed during the inversion which reduces the size of the model space. The review of several parameterisations shows that the vertical velocity, the Thomsen parameter δ, or the Thomsen parameter ε have a transmission pattern along the vertical axis depending on the parameterisation choice. The review of the reflection patterns of those selected parameterisations should be done in the elastic context. Indeed, when reflection data are also inverted, there are potential leakages of the shear parameter at intermediate angles when we carry out acoustic inversion. 相似文献
12.
13.
The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic
media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a
minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of
the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the
hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a)
accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data,
and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the
orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very
weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic,
the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%. 相似文献
14.
Analysis of the traveltime sensitivity kernels for an acoustic transversely isotropic medium with a vertical axis of symmetry 下载免费PDF全文
In anisotropic media, several parameters govern the propagation of the compressional waves. To correctly invert surface recorded seismic data in anisotropic media, a multi‐parameter inversion is required. However, a tradeoff between parameters exists because several models can explain the same dataset. To understand these tradeoffs, diffraction/reflection and transmission‐type sensitivity‐kernels analyses are carried out. Such analyses can help us to choose the appropriate parameterization for inversion. In tomography, the sensitivity kernels represent the effect of a parameter along the wave path between a source and a receiver. At a given illumination angle, similarities between sensitivity kernels highlight the tradeoff between the parameters. To discuss the parameterization choice in the context of finite‐frequency tomography, we compute the sensitivity kernels of the instantaneous traveltimes derived from the seismic data traces. We consider the transmission case with no encounter of an interface between a source and a receiver; with surface seismic data, this corresponds to a diving wave path. We also consider the diffraction/reflection case when the wave path is formed by two parts: one from the source to a sub‐surface point and the other from the sub‐surface point to the receiver. We illustrate the different parameter sensitivities for an acoustic transversely isotropic medium with a vertical axis of symmetry. The sensitivity kernels depend on the parameterization choice. By comparing different parameterizations, we explain why the parameterization with the normal moveout velocity, the anellipitic parameter η, and the δ parameter is attractive when we invert diving and reflected events recorded in an active surface seismic experiment. 相似文献
15.
Wave propagation in a finely layered medium is a very important topic in seismic modelling and inversion. Here we analyse non‐vertical wave propagation in a periodically layered transversely isotropic (VTI) medium and show that the evanescent (attenuation) zones in the frequency‐horizontal slowness domain result in caustics in the group velocity domain. These caustics, which may appear for both the quasi‐compressional (qP) and quasi‐shear (qSV) wave surfaces are frequency dependent but display weak dependence at low frequencies. The caustics computed for a specific frequency differ from those observed at the low‐ and high‐frequency limits. We illustrate these caustics with a few numerical examples and snapshots computed for both qP‐ and qSV‐wave types. 相似文献
16.
Pure acoustic wave propagation in transversely isotropic media by the pseudospectral method 总被引:4,自引:0,他引:4
Seismic wave propagation in transversely isotropic (TI) media is commonly described by a set of coupled partial differential equations, derived from the acoustic approximation. These equations produce pure P‐wave responses in elliptically anisotropic media but generate undesired shear‐wave components for more general TI anisotropy. Furthermore, these equations suffer from instabilities when the anisotropy parameter ε is less than δ. One solution to both problems is to use pure acoustic anisotropic wave equations, which can produce pure P‐waves without any shear‐wave contaminations in both elliptical and anelliptical TI media. In this paper, we propose a new pure acoustic transversely isotropic wave equation, which can be conveniently solved using the pseudospectral method. Like most other pure acoustic anisotropic wave equations, our equation involves complicated pseudo‐differential operators in space which are difficult to handle using the finite difference method. The advantage of our equation is that all of its model parameters are separable from the spatial differential and pseudo‐differential operators; therefore, the pseudospectral method can be directly applied. We use phase velocity analysis to show that our equation, expressed in a summation form, can be properly truncated to achieve the desired accuracy according to anisotropy strength. This flexibility allows us to save computational time by choosing the right number of summation terms for a given model. We use numerical examples to demonstrate that this new pure acoustic wave equation can produce highly accurate results, completely free from shear‐wave artefacts. This equation can be straightforwardly generalized to tilted TI media. 相似文献
17.
The offset‐midpoint travel‐time pyramid for P‐wave in 2D transversely isotropic media with a tilted symmetry axis 下载免费PDF全文
For pre‐stack phase‐shift migration in homogeneous isotropic media, the offset‐midpoint travel time is represented by the double‐square‐root equation. The travel time as a function of offset and midpoint resembles the shape of Cheops’ pyramid. This is also valid for transversely isotropic media with a vertical symmetry axis. In this study, we extend the offset‐midpoint travel‐time pyramid to the case of 2D transversely isotropic media with a tilted symmetry axis. The P‐wave analytical travel‐time pyramid is derived under the assumption of weak anelliptical property of the tilted transverse isotropy media. The travel‐time equation for the dip‐constrained transversely isotropic model is obtained from the depth‐domain travel‐time pyramid. The potential applications of the derived offset‐midpoint travel‐time equation include pre‐stack Kirchhoff migration, anisotropic parameter estimation, and travel‐time calculation in transversely isotropic media with a tilted symmetry axis. 相似文献
18.
19.
We use residual moveouts measured along continuous full azimuth reflection angle gathers, in order to obtain effective horizontal transversely isotropic model parameters. The angle gathers are generated through a special angle domain imaging system, for a wide range of reflection angles and full range of phase velocity azimuths. The estimation of the effective model parameters is performed in two stages. First, the background horizontal transversely isotropic (HTI)/vertical transversely isotropic (VTI) layered model is used, along with the values of reflection angles, for converting the measured residual moveouts (or traveltime errors) into azimuthally dependent normal moveout (NMO) velocities. Then we apply a digital Fourier transform to convert the NMO velocities into azimuthal wavenumber domain, in order to obtain the effective HTI model parameters: vertical time, vertical compression velocity, Thomsen parameter delta and the azimuth of the medium axis of symmetry. The method also provides a reliability criterion of the HTI assumption. The criterion shows whether the medium possesses the HTI type of symmetry, or whether the azimuthal dependence of the residual traveltime indicates to a more complex azimuthal anisotropy. The effective model used in this approach is defined for a 1D structure with a set of HTI, VTI and isotropic layers (with at least one HTI layer). We describe and analyse the reduction of a multi‐layer structure into an equivalent effective HTI model. The equivalent model yields the same NMO velocity and the same offset azimuth on the Earth's surface as the original layered structure, for any azimuth of the phase velocity. The effective model approximates the kinematics of an HTI/VTI layered structure using only a few parameters. Under the hyperbolic approximation, the proposed effective model is exact. 相似文献
20.
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P-mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P-mode wave by setting the axial S-wave phase velocity to zero. However, the separated pure P-wave of this approach is coupled with undesired S-wave in anisotropic media called S-wave artefacts. To eliminate the S-wave artefacts in acoustic waves for anisotropic media, we set the vertical S-wave phase velocity as a function related to propagation directions. Then, we derive a pure P-wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S-wave phase velocity. The differential form of new expression for pure P-wave is reduced to second-order by inserting the expression of S-wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P-wave equation. 相似文献