首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic velocity analysis in the scattering-angle/azimuth domain   总被引:2,自引:0,他引:2  
Migration velocity analysis is carried out by analysing the residual moveout and amplitude variations in common image point gathers (CIGs) parametrized by scattering angle and azimuth. The misfit criterion in the analysis is of the differential-semblance type. By using angles to parametrize the imaging we are able to handle and exploit data with multiple arrivals, although artefacts may occur in the CIGs and need to be suppressed. The CIGs are generated by angle migration, an approach based on the generalized Radon transform (GRT) inversion, and they provide multiple images of reflectors in the subsurface for a range of scattering angles and azimuths. Within the differential semblance applied to these CIGs, we compensate for amplitude versus angle (AVA) effects. Thus, using a correct background velocity model, the CIGs should have no residual moveout nor amplitude variation with angles, and the differential semblance should vanish. If the velocity model is incorrect, however, the events in the CIGs will appear at different depths for different angles and the amplitude along the events will be non-uniform. A standard, gradient-based optimization scheme is employed to develop a velocity updating procedure. The model update is formed by backprojecting the differential semblance misfits through ray perturbation kernels, within a GRT inverse. The GRT inverse acts on the data, subject to a shift in accordance with ray perturbation theory. The performance of our algorithm is demonstrated with two synthetic data examples using isotropic elastic models. The first one allows velocity variation with depth only. In the second one, we reconstruct a low-velocity lens in the model that gives rise to multipathing. The velocity model parametrization is based upon the eigentensor decomposition of the stiffness tensor and makes use of B-splines.  相似文献   

2.
扩展成像条件下的最小二乘逆时偏移   总被引:2,自引:1,他引:1       下载免费PDF全文
刘玉金  李振春 《地球物理学报》2015,58(10):3771-3782
逆时偏移(RTM)是复杂介质条件下地震成像的重要手段.因受观测系统限制、上覆地层影响以及波场带宽有限等因素的影响,现行的常规RTM所采用的互相关成像条件通常对地下构造进行模糊成像.最小二乘逆时偏移(LSRTM)通过最小化线性Born近似正演数据和采集数据之间的波形差异,采用梯度类反演算法优化反射系数模型,获得的成像结果具有更高的分辨率和更可靠的振幅保真度.然而,基于波形拟合的LSRTM对背景速度模型的依赖性很强.误差太大的速度模型容易产生周波跳跃现象,导致LSRTM难以获得全局最优解.为了克服这一问题,本文基于扩展模型的思想,在线性Born近似下,推导得到RTM扩展成像条件.并基于最小二乘反演理论,提出扩展成像条件下的LSRTM方法.理论模型试算表明,本文方法不仅可以提供分辨率更高、振幅属性更为可靠的成像结果,而且能够在一定程度上消除速度误差对反演成像的影响.  相似文献   

3.
Full waveform inversion is a powerful tool for quantitative seismic imaging from wide‐azimuth seismic data. The method is based on the minimization of the misfit between observed and simulated data. This amounts to the solution of a large‐scale nonlinear minimization problem. The inverse Hessian operator plays a crucial role in this reconstruction process. Accounting accurately for the effect of this operator within the minimization scheme should correct for illumination deficits, restore the amplitude of the subsurface parameters, and help to remove artefacts generated by energetic multiple reflections. Conventional minimization methods (nonlinear conjugate gradient, quasi‐Newton methods) only roughly approximate the effect of this operator. In this study, we are interested in the truncated Newton minimization method. These methods are based on the computation of the model update through a matrix‐free conjugate gradient solution of the Newton linear system. We present a feasible implementation of this method for the full waveform inversion problem, based on a second‐order adjoint state formulation for the computation of Hessian‐vector products. We compare this method with conventional methods within the context of 2D acoustic frequency full waveform inversion for the reconstruction of P‐wave velocity models. Two test cases are investigated. The first is the synthetic BP 2004 model, representative of the Gulf of Mexico geology with high velocity contrasts associated with the presence of salt structures. The second is a 2D real data‐set from the Valhall oil field in North sea. Although, from a computational cost point of view, the truncated Newton method appears to be more expensive than conventional optimization algorithms, the results emphasize its increased robustness. A better reconstruction of the P‐wave velocity model is provided when energetic multiple reflections make it difficult to interpret the seismic data. A better trade‐off between regularization and resolution is obtained when noise contamination of the data requires one to regularize the solution of the inverse problem.  相似文献   

4.
Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre‐stack wavefield (the double‐square‐root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre‐stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.  相似文献   

5.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

6.
A technique for automatic cross-well tomography based on semblance and differential semblance optimization is presented. Given a background velocity, the recorded seismic data traces are back-propagated towards the source, i.e. shifted towards time zero using the modelled traveltime between the source and the receiver and corrected for the geometrical spreading. Therefore each back-propagated trace should be a pulse, close to time zero. The mismatches between the back-propagated traces indicate an error in the velocity model. This error can be measured by stacking the back-propagated traces (semblance optimization) or by computing the norm of the difference between adjacent traces (differential semblance optimization).
It is known from surface seismic reflection tomography that both the semblance and differential semblance functional have good convexity properties, although the differential semblance functional is believed to have a larger basin of attraction (region of convergence) around the true velocity model. In the case of the cross-well transmission tomography described in this paper, similar properties are found for these functionals.
The implementation of this automatic method for cross-well tomography is based on the high-frequency approximation to wave propagation. The wavefronts are constructed using a ray-tracing algorithm. The gradient of the cost function is computed by the adjoint-state technique, which has the same complexity as the computation of the functional. This provides an efficient algorithm to invert cross-well data. The method is applied to a synthetic data set to demonstrate its efficacy.  相似文献   

7.
In areas with strong velocity gradients, traditional reverse time migration based on cross-correlation imaging condition not only produces low-frequency noise but also generates diving wave artefacts. The artefacts caused by diving waves have no typical low-frequency characteristics and cannot be eliminated by simple high-pass filtering approaches. We apply the wave-field decomposition imaging condition to analyse the causes of false images in reverse time migration by decomposing the full wave-field into up-going and down-going components in the angle domain. We find that artificial diving wave imaging artefacts, which are generated by the cross-correlation between the up-going source and down-going receiver wave-fields in areas with strong velocity gradients, arise at large angles. We propose an efficient strategy by means of the wavelength-dependent smoothing operator to eliminate artefacts from artificial diving waves in reverse time migration. Specifically, the proposed method provides more reasonable down-going wave-fields in areas with sharp velocity constructs by considering the factor of varying seismic wavelengths during wave propagation, and the artificial components of diving waves are eliminated in a straightforward manner. Meanwhile, the other wave-field components that contribute to true subsurface images are minimally affected. Benefiting from a smoothed velocity, the proposed method can be adapted to the traditional reverse time migration imaging frame, which reveals significant implementation potential for the seismic exploration industry. A salt model is designed and included to demonstrate the effectiveness of our approach.  相似文献   

8.
Imaging the change in physical parameters in the subsurface requires an estimate of the long wavelength components of the same parameters in order to reconstruct the kinematics of the waves propagating in the subsurface. One can reconstruct the model by matching the recorded data with modeled waveforms extrapolated in a trial model of the medium. Alternatively, assuming a trial model, one can obtain a set of images of the reflectors from a number of seismic experiments and match the locations of the imaged interfaces. Apparent displacements between migrated images contain information about the velocity model and can be used for velocity analysis. A number of methods are available to characterize the displacement between images; in this paper, we compare shot‐domain differential semblance (image difference), penalized local correlations, and image‐warping. We show that the image‐warping vector field is a more reliable tool for estimating displacements between migrated images and leads to a more robust velocity analysis procedure. By using image‐warping, we can redefine the differential semblance optimization problem with an objective function that is more robust against cycle‐skipping than the direct image difference. We propose an approach that has straightforward implementation and reduced computational cost compared with the conventional adjoint‐state method calculations. We also discuss the weakness of migration velocity analysis in the migrated‐shot domain in the case of highly refractive media, when the Born modelling operator is far from being unitary and thus its adjoint (migration) operator poorly approximates the inverse.  相似文献   

9.
Velocity analysis based on data correlation   总被引:1,自引:0,他引:1  
Several methods exist to automatically obtain a velocity model from seismic data via optimization. Migration velocity analysis relies on an imaging condition and seeks the velocity model that optimally focuses the migrated image. This approach has been proven to be very successful. However, most migration methods use simplified physics to make them computationally feasible and herein lies the restriction of migration velocity analysis. Waveform inversion methods use the full wave equation to model the observed data and more complicated physics can be incorporated. Unfortunately, due to the band‐limited nature of the data, the resulting inverse problem is highly nonlinear. Simply fitting the data in a least‐squares sense by using a gradient‐based optimization method is sometimes problematic. In this paper, we propose a novel method that measures the amount of focusing in the data domain rather than the image domain. As a first test of the method, we include some examples for 1D velocity models and the convolutional model.  相似文献   

10.
基于照明补偿的单程波最小二乘偏移   总被引:7,自引:6,他引:1       下载免费PDF全文
最小二乘偏移是一种基于反射地震数据与地下反射率间线性关系而建立起来的地震数据线性反演方法,相比常规偏移成像具有更好的保幅性能.本文提出了一种基于照明补偿的单程波最小二乘偏移方法,首先利用单程波方程的稳定Born近似广义屏波场传播算子构建反射地震数据与地下反射率间的线性算子,然后再应用线性最优化方法求解最小二乘偏移所对应的线性反问题.在迭代求解最优化问题的过程中,以地震波场的地下照明强度作为迭代反演的预条件算子加快迭代的收敛速度.单程波传播过程中考虑了速度分界面产生的透射效应,并用单极震源代替常规偏移中的偶极震源.把本文提出的方法应用于层状理论模型和Marmosi模型地震数据的数值试验中均取得了理想的结果.  相似文献   

11.
Seismograms predicted from acoustic or elastic earth models depend very non-linearly on the long wavelength components of velocity. This sensitive dependence demands the use of special variational principles in waveform-based inversion algorithms. The differential semblance variational principle is well-suited to velocity inversion by gradient methods, since its objective function is smooth and convex over a large range of velocity models. An extension of the adjoint state technique yields an accurate estimate of the differential semblance gradient. Non-linear conjugate gradient iteration is quite successful in locating the global differential semblance minimum, which is near the ordinary least-squares global minimum when coherent data noise is small. Several examples, based on the 2D primaries-only acoustic model, illustrate features of the method and its performance.  相似文献   

12.
Migration velocity analysis aims at determining the background velocity model. Classical artefacts, such as migration smiles, are observed on subsurface offset common image gathers, due to spatial and frequency data limitations. We analyse their impact on the differential semblance functional and on its gradient with respect to the model. In particular, the differential semblance functional is not necessarily minimum at the expected value. Tapers are classically applied on common image gathers to partly reduce these artefacts. Here, we first observe that the migrated image can be defined as the first gradient of an objective function formulated in the data‐domain. For an automatic and more robust formulation, we introduce a weight in the original data‐domain objective function. The weight is determined such that the Hessian resembles a Dirac function. In that way, we extend quantitative migration to the subsurface‐offset domain. This is an automatic way to compensate for illumination. We analyse the modified scheme on a very simple 2D case and on a more complex velocity model to show how migration velocity analysis becomes more robust.  相似文献   

13.
We propose a two-dimensional, non-linear method for the inversion of reflected/converted traveltimes and waveform semblance designed to obtain the location and morphology of seismic reflectors in a lateral heterogeneous medium and in any source-to-receiver acquisition lay-out. This method uses a scheme of non-linear optimization for the determination of the interface parameters where the calculation of the traveltimes is carried out using a finite-difference solver of the Eikonal equation, assuming an a priori known background velocity model. For the search for the optimal interface model, we used a multiscale approach and the genetic algorithm global optimization technique. During the initial stages of inversion, we used the arrival times of the reflection phase to retrieve the interface model that is defined by a small number of parameters. In the successive steps, the inversion is based on the optimization of the semblance value determined along the calculated traveltime curves. Errors in the final model parameters and the criteria for the choice of the best-fit model are also estimated from the shape of the semblance function in the model parameter space. The method is tested and validated on a synthetic dataset that simulates the acquisition of reflection data in a complex volcanic structure. This study shows that the proposed inversion approach is a valid tool for geophysical investigations in complex geological environments, in order to obtain the morphology and positions of embedded discontinuities.  相似文献   

14.
First‐arrival traveltime tomography is a robust tool for near‐surface velocity estimation. A common approach to stabilizing the ill‐posed inverse problem is to apply Tikhonov regularization to the inversion. However, the Tikhonov regularization method recovers smooth local structures while blurring the sharp features in the model solution. We present a first‐arrival traveltime tomography method with modified total‐variation regularization to preserve sharp velocity contrasts and improve the accuracy of velocity inversion. To solve the minimization problem of the new traveltime tomography method, we decouple the original optimization problem into the two following subproblems: a standard traveltime tomography problem with the traditional Tikhonov regularization and a L2 total‐variation problem. We apply the conjugate gradient method and split‐Bregman iterative method to solve these two subproblems, respectively. Our synthetic examples show that the new method produces higher resolution models than the conventional traveltime tomography with Tikhonov regularization, and creates less artefacts than the total variation regularization method for the models with sharp interfaces. For the field data, pre‐stack time migration sections show that the modified total‐variation traveltime tomography produces a near‐surface velocity model, which makes statics corrections more accurate.  相似文献   

15.
振幅保真的单程波方程偏移理论   总被引:38,自引:11,他引:27       下载免费PDF全文
张宇 《地球物理学报》2006,49(5):1410-1430
本报告综述了近年来发展起来的真振幅单程波方程偏移理论,对各种基于单程波方程的偏移振幅作出了系统的分析介绍.为了得到正确的偏移振幅,叠后偏移之前必须进行球面扩散校正.但是,作为叠后相位移偏移算法的推广,Dubrulle氏的共炮检距偏移除了零炮检距和平层两种特例外,它不能给出正确的偏移振幅.通过分析,我们发现传统的单程波单炮偏移不是保振幅算法.利用真振幅单程波方程分解和校正地表的初值条件,我们可以将常规偏移方法改造为真振幅算法并且证明在高频渐近的意义下,新方法的偏移振幅等价于Kirchhoff反演的结果.进一步研究发现可以利用单平方根算子和双平方根算子输出真振幅共反射角剖面.我们的分析指出,这时正确的成像条件为乘积pUp*D.与真振幅共炮偏移所需的商型成像条件pU/pD相比,共反射角偏移的计算稳定性大为改善并且在实际地震资料处理中有重要的应用.  相似文献   

16.
We present preserved‐amplitude downward continuation migration formulas in the aperture angle domain. Our approach is based on shot‐receiver wavefield continuation. Since source and receiver points are close to the image point, a local homogeneous reference velocity can be approximated after redatuming. We analyse this approach in the framework of linearized inversion of Kirchhoff and Born approximations. From our analysis, preserved‐amplitude Kirchhoff and Born inverse formulas can be derived for the 2D case. They involve slant stacks of filtered subsurface offset domain common image gathers followed by the application of the appropriate weighting factors. For the numerical implementation of these formulas, we develop an algorithm based on the true amplitude version of the one‐way paraxial approximation. Finally, we demonstrate the relevance of our approach with a set of applications on synthetic datasets and compare our results with those obtained on the Marmousi model by multi‐arrival ray‐based preserved‐amplitude migration. While results are similar, we observe that our results are less affected by artefacts.  相似文献   

17.
声波方程的逆散射反演乃是求解双曲型偏微分方程系数项反问题的一种解析方法,一般利用Born近似把这一非线性反问题线性化,并给出了恒参考波速介质中反问题解的解析表达式.由于Born近似假定波速扰动为一级无穷小,因此,在大多数情况下,恒参考波速介质模型的反问题的解无法得以应用.本文研究介质参考波速沿某个方向线性变化时的声散射理论,导出了声波方程逆散射问题解的解析表达式,从而既可使Born近似的假定在大多数情况下能得以满足,又可利用快速Fourier变换快速实现介质波速扰动的反演成象.  相似文献   

18.
参考波速线性变化时的声波方程逆散射反演   总被引:3,自引:3,他引:3       下载免费PDF全文
声波方程的逆散射反演乃是求解双曲型偏微分方程系数项反问题的一种解析方法,一般利用Born近似把这一非线性反问题线性化,并给出了恒参考波速介质中反问题解的解析表达式.由于Born近似假定波速扰动为一级无穷小,因此,在大多数情况下,恒参考波速介质模型的反问题的解无法得以应用.本文研究介质参考波速沿某个方向线性变化时的声散射理论,导出了声波方程逆散射问题解的解析表达式,从而既可使Born近似的假定在大多数情况下能得以满足,又可利用快速Fourier变换快速实现介质波速扰动的反演成象.  相似文献   

19.

真振幅成像是一种代表性的定量估计模型参数扰动高波数部分的地震波成像方法.经典的真振幅成像方法在高频近似和理想照明假设条件下求取显式对角Hessian逆矩阵作为偏移振幅加权算子,用以校正波传播过程中的几何扩散效应,得到模型参数扰动的带限估计.真振幅保真成像方法在利用逆时偏移(RTM)框架实现时会产生低波数噪声,影响对高波数参数估计的精度.本文给出了一种新的基于RTM框架的真振幅保真成像条件,该成像条件针对反射波数据,在高频近似下散射模式对应正问题及Bayes反问题框架下导出.与传统基于高频渐进反演的波动方程成像方法类似,利用本文提出RTM成像条件能够保证计算结果与高频近似下反演结果的一致性.同时,利用本文提出RTM真振幅成像条件能够在成像过程中自动保真的消除传统真振幅RTM算法中存在低波数噪声,模型数值实验结果验证了本文方法的正确性和有效性.

  相似文献   

20.
真振幅成像是一种代表性的定量估计模型参数扰动高波数部分的地震波成像方法.经典的真振幅成像方法在高频近似和理想照明假设条件下求取显式对角Hessian逆矩阵作为偏移振幅加权算子,用以校正波传播过程中的几何扩散效应,得到模型参数扰动的带限估计.真振幅保真成像方法在利用逆时偏移(RTM)框架实现时会产生低波数噪声,影响对高波数参数估计的精度.本文给出了一种新的基于RTM框架的真振幅保真成像条件,该成像条件针对反射波数据,在高频近似下散射模式对应正问题及Bayes反问题框架下导出.与传统基于高频渐进反演的波动方程成像方法类似,利用本文提出RTM成像条件能够保证计算结果与高频近似下反演结果的一致性.同时,利用本文提出RTM真振幅成像条件能够在成像过程中自动保真的消除传统真振幅RTM算法中存在低波数噪声,模型数值实验结果验证了本文方法的正确性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号