首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A modified reverse-time migration algorithm for offset vertical seismic profiling data is proposed. This algorithm performs depth imaging of target areas in the borehole vicinity without taking into account the overburden. Originally recorded seismograms are used; reliable results can be obtained using only the velocity profile obtained along the well. The downgoing wavefield emitted from a surface source is approximated in the target area using the transmitted P-wave, recorded by the receivers deployed in the well. This is achieved through a reverse-time extrapolation of the direct transmitted P-wave into the target area after its separation in offset vertical seismic profiling seismograms generated using a finite-difference scheme for the solution of the scalar wave equation.
The proposed approach produces 'kinematically' reliable images from reflected PP- and PS-waves and, furthermore, can be applied as a salt proximity tool for salt body flank imaging based on the transmitted PS-waves. Our experiments on synthetic data demonstrate that the modified reverse-time migration provides reliable depth images based on offset vertical seismic profiling data even if only the velocity profile obtained along the borehole is used.  相似文献   

2.
优化算法的选取在很大程度上影响着三维重力反演的计算效率,从而制约着三维重力反演的实用性.在复杂地质构造背景下,不同岩性单元之间可能会发生物性突变,产生尖锐边界.为此,本文提出了一种新的基于柯西分布约束和快速近端目标函数(Fast Proximal Objective Function,FPOF)优化的三维重力反演方法.FPOF优化方法的一个突出特点是在每一步迭代过程中逐一计算剖分网格内的未知密度参数,因此,有较低的计算复杂度和较高的计算效率.此外,目标函数中柯西范数(Cauchy norm)的引入会对反演结果施加稀疏性,有助于产生块状效果.理论模型测试表明,本文方法不仅能产生更加聚焦的反演效果,而且反演所需的时间也比传统的共轭梯度优化方法少.最后将本文方法应用于我国西部某地区实际重力数据,反演结果与已知的地质信息有较好的一致性.  相似文献   

3.
高斯束逆时偏移结合了射线类偏移的高计算效率和波动方程逆时偏移的高精度,能很好地处理焦散点、大倾角成像问题,并且具有面向目标成像的能力.多分量地震资料的偏移技术可以对地下复杂构造进行更准确的成像,由于实际地下介质具有黏滞性,研究黏弹性叠前逆时偏移具有一定的现实意义.本文采用高斯束逆时偏移方法对多分量地震数据进行吸收衰减补偿,首先分别给出纵波和转换波共炮域高斯束叠前逆时偏移方法原理,在此基础上推导补偿吸收衰减的表达式,校正Q引起的振幅衰减和相位畸变,实现基于吸收衰减补偿的多分量高斯束叠前逆时偏移.数值模型的测试结果显示,在考虑地下介质的黏滞性时,本文方法具有更高的成像分辨率.  相似文献   

4.
目前研究基于起伏地表、复杂构造和速度复杂等条件的地震精确成像方法有重要意义。逆时偏移是一种高精度的偏移成像方法。文中在声波方程中引入波阻抗函数得到一种新的无反射递推算法,并通过坐标变换原理推导出起伏地表条件下的算法,利用爆炸反射面逆时偏移原理和零时间叠后逆时偏移成像条件,实现了复杂条件下的叠后数值模拟及逆时偏移。理论模型和实际资料的计算说明该方法不仅能有效压制层间反射波,并能处理起伏地表条件下的地震成像问题,证明本方法有较强适应性和实用性。  相似文献   

5.
Besides classical imaging techniques, full-waveform inversion is an increasingly popular method to derive elastic subsurface properties from seismic data. High-resolution velocity models can be obtained, and spatial sampling criteria are less strict than for imaging methods, because the entire information content of the seismic waveforms is used. As high operational costs arise from seismic surveys, the acquirable data volume is often limited by economic criteria. By selecting optimal locations for seismic sources, the information content of the data can be maximized, and the number of sources and thus the acquisition costs can be reduced compared with standard acquisition designs. The computation of such optimized designs for large-size 3D inverse problems at affordable computational cost is challenging. By using a sequential receiver-wise optimization strategy, we substantially reduce the computational requirements of the optimization process. We prove the applicability of this method by means of numerical 3D acoustic examples. Optimized source designs for different receiver patterns are computed for a realistic subsurface model, and the value of the designs is evaluated by comparing checkerboard inversion tests with different acquisition designs. Our examples show that inversion results with higher accuracy can be obtained with the optimized designs, regardless of the number of sources, the number of receivers, or the receiver distribution. Larger benefits of the optimized designs are visible when a sparse receiver geometry is used.  相似文献   

6.
A new interpretative approach is proposed to interpret residual gravity anomaly profiles in order to determine the depth, the amplitude coefficient and the geometric shape factor of simple spherical and cylindrical buried structures. This new approach is based on both Fair function minimization and on stochastic optimization modeling. The validity of this interpretative approach is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random noises components and a known statistical distribution. Being theoretically proven, this new approach has been applied on three real field gravity anomalies from Sweden, Senegal and the United States. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable.  相似文献   

7.
The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.  相似文献   

8.
逆时偏移计算中的边界处理分析及应用   总被引:3,自引:3,他引:0       下载免费PDF全文
在地震资料的处理中,逆时偏移方法可以实现复杂构造高精度成像,但计算量和存储量两大问题影响了该方法的实际应用.逆时偏移算法中的边界处理方式的优化可以大大减少存储量,本文讨论了记录波场边界信息的吸收边界和随机边界这两种方法的计算效率和成像效果,提出了吸收边界中只记录边界范围内未衰减单层波场的方法并通过数值实验验证了其可行性,选择了不同的边界策略应用于模型数据和实际资料的处理.结果表明:记录单层波场边界信息的吸收边界的成像效果同传统存储波场历史的方式几乎无差别,但要额外存储每个时刻的波场边界信息;随机边界不需要额外存储波场信息,但会带来边界漫反射影响和计算区域的增加;记录单层波场边界可以明显减少存储量,并且不影响成像效果.  相似文献   

9.
Elastic reverse-time migration (RTM) can reflect the underground elastic information more comprehensively than single-component Pwave migration. One of the most important requirements of elastic RTM is to solve wave equations. The imaging accuracy and efficiency of RTM depends heavily on the algorithms used for solving wave equations. In this paper, we propose an efficient staggered-grid finite-difference (SFD) scheme based on a sampling approximation method with adaptive variable difference operator lengths to implement elastic prestack RTM. Numerical dispersion analysis and wavefield extrapolation results show that the sampling approximation SFD scheme has greater accuracy than the conventional Taylor-series expansion SFD scheme. We also test the elastic RTM algorithm on theoretical models and a field data set, respectively. Experiments presented demonstrate that elastic RTM using the proposed SFD scheme can generate better images than that using the Taylor-series expansion SFD scheme, particularly for PS images. FurH. thermore, the application of adaptive variable difference operator lengths can effectively improve the computational efficiency of elastic RTM.  相似文献   

10.
We present a layer-stripping method of migration for irregularly layered media in which first-order velocity discontinuities separate regions of constant or smoothly varying velocity. We use the reverse-time method to migrate seismic data layer by layer, from the surface downwards. As part of the migration of a given layer, the bottom boundary of the layer is defined based on power in the migrated signal, and a seismic section is collected along it. This new section serves as the boundary condition for migration in the next layer. This procedure is repeated for each layer, with the final image formed from the individual layer images. Layer-stripping migration consists of three steps: (1) layer definition, (2) wavefield extrapolation and imaging, and (3) boundary determination. The migration scheme when used with reverse-time extrapolation is similar to datuming with an imaging condition. The reverse-time method uses an explicit fourth-order time, tenth-order space, finite-difference approximation to the scalar wave equation. The advantages of layer-stripping reverse-time migration are: (1) it preserves the benefits of the reverse-time method by handling strong velocity contrasts between layers and steeply dipping structures; (2) it reduces computer memory and saves computation time in high-velocity layers, and (3) it allows interpretational control of the image. Post-stack layer-stripping reverse-time migration is illustrated with a synthetic CMP data example. Prestack migration is illustrated with a synthetic data set and with a marine seismic reflection profile across the Santa Maria Basin and the Hosgri Fault in central California.  相似文献   

11.
格子法在起伏地表叠前逆时深度偏移中的应用   总被引:6,自引:2,他引:4       下载免费PDF全文
基于全程波波动方程的逆时偏移(Reverse Time Migration)可以对回转波、多次反射波成像,不受横向速度变化影响,没有倾角限制,随着计算机软硬件技术的进步,再次成为偏移方法研究热点.本文将格子法用于叠前逆时深度偏移成像.格子法作为波场延拓方法,处理起伏地表边界条件容易,可用于含起伏地表边界条件的逆时波场延拓;可利用变尺度非规则对计算域进行离散,因此可根据速度模型调整网格尺度来降低存储量,放大时间步长,降低计算量.采用光滑的曲人工边界,也可避免常规的PML吸收边界存在的角点区域需特别处理的麻烦.本方法通过事先计算和存储边界单元的局部几何参数,与直边界PML方法相比不增加任何计算量.格子法还具有容易实现并行计算的特点,非常适用于叠前逆时偏移.本文给出了二维问题算例.  相似文献   

12.
基于FFT-MA谱模拟的快速随机反演方法研究   总被引:3,自引:2,他引:1       下载免费PDF全文
虽然基于地质统计学的随机反演方法能够有效融合测井资料中的高频信息,但计算效率低,占用内存大,限制了它在实际资料中的应用.本文在保留传统随机反演方法优点的基础上,创造性地引入傅里叶滑动平均(Fast Fourier Transform-Moving Average,FFT-MA)谱模拟进行频率域的地质统计模拟,并利用逐步变形算法(Gradual Deformation Method,GDM)确保模拟结果与实际地震数据的匹配,构建了基于FFT-MA谱模拟的新的快速随机反演方法.与常规随机反演相比,新方法不仅分辨率高,而且能够使反演解得到快速收敛,有效提高计算效率,减少内存占用.模型试算获得了与理论模型吻合度较好的高分辨率反演结果.实际资料分析也表明新方法所得到的高分辨率反演结果能够对薄互储层进行良好的展示,为薄储层的识别提供高效可靠的技术支持.  相似文献   

13.
地面与井中观测条件下的微地震干涉逆时定位算法   总被引:4,自引:4,他引:0       下载免费PDF全文
勘探和开发非常规油气藏已经成为国际油气工业界的新热点.由于这类油藏具有低渗透率的特点,开采过程中往往需要多级压裂形成能够使烃类自由流动的裂隙.通过定位分析压裂过程中诱导的微地震震源能够帮助人们刻画裂缝属性(走向、密度等),评价压裂效果,分析断裂模式,推定震源机制等.微地震定位可以采用波动方程逆时聚焦方法实现.由于微地震数据信噪比低,加之速度模型不准确、稀疏观测等诸多因素使得定位的精度大打折扣.本文将波动方程逆时聚焦定位原理与干涉"成像"原理相结合,探讨多源微地震信号的干涉逆时定位算法,尤其扩展该算法到三维多分量地面、井中以及井地联合观测条件下.通过理论合成数据与实际射孔资料的数值试验,展示了该微地震定位算法的精度优势与抗噪特点,并指出波场聚焦微地震定位方法在实际应用中的制约因素与应对策略.  相似文献   

14.
Typical pump-and-treat (PAT) optimization problems involve design of pumping schemes, while minimizing cost and meeting a set of constraints. Due to scarcity of information about the hydrogeological system, stochastic modeling approaches can be used to assess tradeoffs between optimality and reliability. Using a stochastic approach, the constrained, single-objective problem may be turned into a multiobjective problem by substituting constraint inequalities with an additional objective function (OF) that accounts for the reliability of the PAT process. In this work, two approaches are analyzed: in one case, the additional OF consists of the probability of failure of a given remediation policy; in another, the OF additional is represented by the recourse, namely the penalty cost induced by the violation of constraints. In order to overcome the overwhelming computational cost required by stochastic simulation, surrogate forms of the OFs are introduced. In the test case under investigation, such functions are estimated by a kriging interpolation of the OF over a series of data points obtained from stochastic simulations of flow and transport, and calibrated against stochastic optimization solutions. The analysis of the two approaches for addressing the tradeoff of cost vs. reliability indicates that recourse accounts not only for the frequency of constraint violations, as the probability of failure does, but also for the intensity with which these occur. Ultimately, the recourse method allows considering less restrictive policies, although these may be highly sensitive to the choice of penalty functions.  相似文献   

15.
: As with all dynamic programming formulations, differential dynamic programming (DDP) successfully exploits the sequential decision structure of multi-reservoir optimization problems, overcomes difficulties with the nonconvexity of energy production functions for hydropower systems, and provides optimal feedback release policies. DDP is particularly well suited to optimizing large-scale multi-reservoir systems due to its relative insensitivity to state-space dimensionality. This advantage of DDP encourages expansion of the state vector to include additional multi-lag hydrologic information and/or future inflow forecasts in developing optimal reservoir release policies. Unfortunately, attempts at extending DDP to the stochastic case have not been entirely successful. A modified stochastic DDP algorithm is presented which overcomes difficulties in previous formulations. Application of the algorithm to a four-reservoir hydropower system demonstrates its capabilities as an efficient approach to solving stochastic multi-reservoir optimization problems. The algorithm is also applied to a single reservoir problem with inclusion of multi-lag hydrologic information in the state vector. Results provide evidence of significant benefits in direct inclusion of expanded hydrologic state information in optimal feedback release policies.  相似文献   

16.
: As with all dynamic programming formulations, differential dynamic programming (DDP) successfully exploits the sequential decision structure of multi-reservoir optimization problems, overcomes difficulties with the nonconvexity of energy production functions for hydropower systems, and provides optimal feedback release policies. DDP is particularly well suited to optimizing large-scale multi-reservoir systems due to its relative insensitivity to state-space dimensionality. This advantage of DDP encourages expansion of the state vector to include additional multi-lag hydrologic information and/or future inflow forecasts in developing optimal reservoir release policies. Unfortunately, attempts at extending DDP to the stochastic case have not been entirely successful. A modified stochastic DDP algorithm is presented which overcomes difficulties in previous formulations. Application of the algorithm to a four-reservoir hydropower system demonstrates its capabilities as an efficient approach to solving stochastic multi-reservoir optimization problems. The algorithm is also applied to a single reservoir problem with inclusion of multi-lag hydrologic information in the state vector. Results provide evidence of significant benefits in direct inclusion of expanded hydrologic state information in optimal feedback release policies.  相似文献   

17.
多分量联合逆时偏移最佳匹配层吸收边界   总被引:3,自引:2,他引:1  
有限空间内的波动方程逆时偏移需要利用有效的边界处理技术用以消除人工截断对偏移结果产生的影响。本文以横向各向同性介质弹性波速度-应力方程为基础,依据传统分裂式最佳匹配层(Perfect Matched Layer,PML)吸收边界技术的思想,推导了应用于逆时偏移的完全匹配层波动方程,并给出了其高阶交错网格有限差分格式。针对由边界处向计算区域内传播的"反射波",以及地震记录排列两端地震同相轴突变对计算区域的影响这两方面问题,本文给出了逆时偏移中吸收层的布设方式。模型和实际资料的弹性波叠前多分量联合逆时深度偏移结果表明本文的边界处理方法取得了较好的吸收效果,获得了好的联合偏移成像结果。  相似文献   

18.
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW‐related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling.  相似文献   

19.
A least-squares reverse-time migration scheme is presented for reflectivity imaging. Based on an accurate reflection modeling formula, this scheme produces amplitude-preserved stacked reflectivity images with zero phase. Spatial preconditioning, weighting and the Barzilai-Borwein method are applied to speed up the convergence of the least-squares inversion. In addition, this scheme compensates the effect of ghost waves to broaden the bandwidth of the reflectivity images. Furthermore, roughness penalty constraint is used to regularize the inversion, which in turn stabilizes inversion and removes high-wavenumber artifacts and mitigates spatial aliasing. The examples of synthetic and field datasets demonstrate the scheme can generate zerophase reflectivity images with broader bandwidth, higher resolution, fewer artifacts and more reliable amplitudes than conventional reverse-time migration.  相似文献   

20.
康玮  程玖兵 《地球物理学报》2012,55(3):1033-1045
地下岩石的速度各向异性影响地震波的传播与成像.横向各向同性(TI)介质为最普遍的等效各向异性模型.引入TI介质拟声波方程可以避免复杂的弹性波方程求解以及各向异性介质波场分离,以满足对纵波成像的实际需要.本文从垂直横向各向同性(VTI)介质弹性波方程出发,推导出正应力表达的拟声波方程以及相应的纵波分量的表达式,进而分析从频散关系得到的拟声波方程的物理意义,而后将拟声波方程扩展到更一般的倾斜横向各向同性(TTI)介质中.波前快照与群速度平面的对比验证了拟声波方程可以很好地近似描述qP波的运动学特征.在此基础上,将拟声波方程应用在逆时偏移中并与其特例声波近似方程进行对比,讨论了计算效率、稳定性等实际问题.数值试验表明VTI介质情况下采用声波近似方程可以提高计算效率,而TTI介质qP-qSV波方程则在效率相当的情况下可以保证稳定性.SEG/HESS模型和逆冲模型逆时偏移试验验证了本文TI介质拟声波方程的实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号