首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
When a porous layer is permeated by mesoscale fractures, wave-induced fluid flow between pores and fractures can cause significant attenuation and dispersion of velocities and anisotropy parameters in the seismic frequency band. This intrinsic dispersion due to fracturing can create frequency-dependent reflection coefficients in the layered medium. In this study, we derive the frequency-dependent PP and PS reflection coefficients versus incidence angle in the fractured medium. We consider a two-layer vertical transverse isotropy model constituted by an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce the intrinsic dispersion due to fracturing in the sand layer. Based on the series coefficients that control the behaviour of velocity and anisotropy parameters in the fractured medium at low frequencies, we extend the conventional amplitude-versus-offset equations into frequency domain and derive frequency-dependent amplitude-versus-offset equations at the elastic–anelastic surface. Increase in fracture length or fracture density can enlarge the frequency dependence of amplitude-versus-offset attributes of PP and PS waves. Also, the frequency dependence of magnitude and phase angle of PP and PS reflection coefficients increases as fracture length or fracture density increases. Amplitude-versus-offset type of PP and PS reflection varies with fracture parameters and frequency. What is more, fracture length shows little impact on the frequency-dependent critical phase angle, while the frequency dependence of the critical phase angle increases with fracture density.  相似文献   

2.
Based on analytic relations, we compute the reflection and transmission responses of a periodically layered medium with a stack of elastic shales and partially saturated sands. The sand layers are considered anelastic (using patchy saturation theory) or elastic (with effective velocity). Using the patchy saturation theory, we introduce a velocity dispersion due to mesoscale attenuation in the sand layer. This intrinsic anelasticity is creating frequency dependence, which is added to the one coming from the layering (macroscale). We choose several configurations of the periodically layered medium to enhance more or less the effect of anelasticity. The worst case to see the effect of intrinsic anelasticity is obtained with low dispersion in the sand layer, strong contrast between shales and sands, and a low value of the net‐to‐gross ratio (sand proportion divided by the sand + shale proportion), whereas the best case is constituted by high dispersion, weak contrast, and high net‐to‐gross ratio. We then compare the results to show which dispersion effect is dominating in reflection and transmission responses. In frequency domain, the influence of the intrinsic anelasticity is not negligible compared with the layering effect. Even if the main resonance patterns are the same, the resonance peaks for anelastic cases are shifted towards high frequencies and have a slightly lower amplitude than for elastic cases. These observations are more emphasized when we combine all effects and when the net‐to‐gross ratio increases, whereas the differences between anelastic and elastic results are less affected by the level of intrinsic dispersion and by the contrast between the layers. In the time domain, the amplitude of the responses is significantly lower when we consider intrinsic anelastic layers. Even if the phase response has the same features for elastic and anelastic cases, the anelastic model responses are clearly more attenuated than the elastic ones. We conclude that the frequency dependence due to the layering is not always dominating the responses. The frequency dependence coming from intrinsic visco‐elastic phenomena affects the amplitude of the responses in the frequency and time domains. Considering intrinsic attenuation and velocity dispersion of some layers should be analyzed while looking at seismic and log data in thin layered reservoirs.  相似文献   

3.
Naturally fractured reservoirs are becoming increasingly important for oil and gas exploration in many areas of the world. Because fractures may control the permeability of a reservoir, it is important to be able to find and characterize fractured zones. In fractured reservoirs, the wave‐induced fluid flow between pores and fractures can cause significant dispersion and attenuation of seismic waves. For waves propagating normal to the fractures, this effect has been quantified in earlier studies. Here we extend normal incidence results to oblique incidence using known expressions for the stiffness tensors in the low‐ and high‐frequency limits. This allows us to quantify frequency‐dependent anisotropy due to the wave‐induced flow between pores and fractures and gives a simple recipe for computing phase velocities and attenuation factors of quasi‐P and SV waves as functions of frequency and angle. These frequency and angle dependencies are concisely expressed through dimensionless velocity anisotropy and attenuation anisotropy parameters. It is found that, although at low frequencies, the medium is close to elliptical (which is to be expected as a dry medium containing a distribution of penny‐shaped cracks is known to be close to elliptical); at high frequencies, the coupling between P‐wave and SV‐wave results in anisotropy due to the non‐vanishing excess tangential compliance.  相似文献   

4.
When a seismic signal propagates through a finely layered medium, there is anisotropy if the wavelengths are long enough compared to the layer thicknesses. It is well known that in this situation, the medium is equivalent to a transversely isotropic material. In addition to anisotropy, the layers may show intrinsic anelastic behaviour. Under these circumstances, the layered medium exhibits Q anisotropy and anisotropic velocity dispersion. The present work investigates the anelastic effect in the long-wavelength approximation. Backus's theory and the standard linear solid rheology are used as models to obtain the directional properties of anelasticity corresponding to the quasi-compressional mode qP, the quasi-shear mode qSV, and the pure shear mode SH, respectively. The medium is described by a complex and frequency-dependent stiffness matrix. The complex and phase velocities for homogeneous viscoelastic waves are calculated from the Christoffel equation, while the wave-fronts (energy velocities) and quality factor surfaces are obtained from energy considerations by invoking Poynting's theorem. We consider two-constituent stationary layered media, and study the wave characteristics for different material compositions and proportions. Analyses on sequences of sandstone-limestone and shale-limestone with different degrees of anisotropy indicate that the quality factors of the shear modes are more anisotropic than the corresponding phase velocities, cusps of the qSV mode are more pronounced for low frequencies and midrange proportions, and in general, attenuation is higher in the direction perpendicular to layering or close to it, provided that the material with lower velocity is the more dissipative. A numerical simulation experiment verifies the attenuation properties of finely layered media through comparison of elastic and anelastic snapshots.  相似文献   

5.
流体在断裂和岩石骨架间的交换被认为是影响岩石弹性参数各向异性的主要原因,理论研究表明断裂尺度同样对弹性参数的各向异性也有影响.为了说明两者对各向异性影响以实现多尺度断裂裂隙的识别,本文在等效介质模型的基础上,应用数值分析的方法研究速度和衰减(1/Q)随多尺度断裂、频率和流体因子变化规律.结果表明介质弹性参数是频率依赖的,并且参数中存在衰减项,而这种频率依赖性与介质物性参数中的断裂尺度及流体性质存在一定的联系;当断裂定向分布时,参数结果显示为各向异性;不同断裂尺度具有不同的波速频散特性,剪切波分裂程度依赖于频率,断裂尺度起着控制作用,高频时对小尺度的敏感,低频段对大尺度敏感.在地震频段Thomsen参数随着频率的增大而减小,随着断裂尺寸的增大而减小.因此地震数据可能区分断裂和微裂隙引起各向异性,从而可测量断裂尺度.  相似文献   

6.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

7.
Average elastic properties of a fluid‐saturated fractured rock are discussed in association with the extremely slow and dispersive Krauklis wave propagation within individual fractures. The presence of the Krauklis wave increases P‐wave velocity dispersion and attenuation with decreasing frequency. Different laws (exponential, power, fractal, and gamma laws) of distribution of the fracture length within the rock show more velocity dispersion and attenuation of the P‐wave for greater fracture density, particularly at low seismic frequencies. The results exhibit a remarkable difference in the P‐wave reflection coefficient for frequency and angular dependency from the fractured layer in comparison with the homogeneous layer. The biggest variation in behaviour of the reflection coefficient versus incident angle is observed at low seismic frequencies. The proposed approach and results of calculations allow an interpretation of abnormal velocity dispersion, high attenuation, and special behaviour of reflection coefficients versus frequency and angle of incidence as the indicators of fractures.  相似文献   

8.
Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid.  相似文献   

9.
Measurements of seismic anisotropy in fractured rock are used at present to deduce information about the fracture orientation and the spatial distribution of fracture intensity. Analysis of the data is based upon equivalent-medium theories that describe the elastic response of a rock containing cracks or fractures in the long-wavelength limit. Conventional models assume frequency independence and cannot distinguish between microcracks and macrofractures. The latter, however, control the fluid flow in many subsurface reservoirs. Therefore, the fracture size is essential information for reservoir engineers. In this study we apply a new equivalent-medium theory that models frequency-dependent anisotropy and is sensitive to the length scale of fractures. The model considers velocity dispersion and attenuation due to a squirt-flow mechanism at two different scales: the grain scale (microcracks and equant matrix porosity) and formation-scale fractures. The theory is first tested and calibrated against published laboratory data. Then we present the analysis and modelling of frequency-dependent shear-wave splitting in multicomponent VSP data from a tight gas reservoir. We invert for fracture density and fracture size from the frequency dependence of the time delay between split shear waves. The derived fracture length matches independent observations from borehole data.  相似文献   

10.
P-wave velocity anisotropy determined from a cross-hole survey at the Imperial College borehole test site compares favourably with that measured in the laboratory on core from the holes. The holes penetrate a layered sequence of sandstones, shales and carbonates of the Namurian Upper Limestone Group. The Laboratory measurements of the vertical and horizontal velocities of core samples indicate that the shales exhibit P-wave anisotropies of over 20% but that the sandstones and limestones are only slightly anisotropic. These discrete measurements have been used in combination with wireline data to produce a log of P-wave anisotropy. Including the anisotropic information vastly improves the match between observed and synthetic traveltimes from the cross-hole data set. This implies that there is little frequency dependence of intrinsic P-wave anisotropy. Inversion of the cross-hole traveltimes highlights the need for good angular coverage in order to resolve the anisotropy parameters. The observed P-wave anisotropy of the field data is due to the combined effect of sedimentary layering and the intrinsic anisotropy of the rocks. The intrinsic anisotropy is found to be the dominant factor.  相似文献   

11.
Frequency-dependent amplitude variation with offset offers an effective method for hydrocarbon detections and analysis of fluid flow during production of oil and natural gas within a fractured reservoir. An appropriate representation for the frequency dependency of seismic amplitude variation with offset signatures should incorporate influences of dispersive and attenuating properties of a reservoir and the layered structure for either isotropic or anisotropic dispersion analysis. In this study, we use an equivalent medium permeated with aligned fractures that simulates frequency-dependent anisotropy, which is sensitive to the filled fluid of fractures. The model, where pores and fractures are filled with two different fluids, considers velocity dispersion and attenuation due to mesoscopic wave-induced fluid flow. We have introduced an improved scheme seamlessly linking rock physics modelling and calculations for frequency-dependent reflection coefficients based on the propagator matrix technique. The modelling scheme is performed in the frequency-slowness domain and can properly incorporate effects of both bedded structure of the reservoir and velocity dispersion quantified with frequency-dependent stiffness. Therefore, for a dispersive and attenuated layered model, seismic signatures represent a combined contribution of impedance contrast, layer thickness, anisotropic dispersion of the fractured media and tuning and interference of thin layers, which has been avoided by current conventional methods. Frequency-dependent amplitude variation with offset responses was studied via considering the influences of fracture fills, layer thicknesses and fracture weaknesses for three classes amplitude variation with offset reservoirs. Modelling results show the applicability of the introduced procedure for interpretations of frequency-dependent seismic anomalies associated with both layered structure and velocity dispersion of an equivalent anisotropic medium. The implications indicate that anisotropic velocity dispersion should be incorporated accurately to obtain enhanced amplitude variation with offset interpretations. The presented frequency-dependent amplitude variation with offset modelling procedure offers a useful tool for fracture fluid detections in an anisotropic dispersive reservoir with layered structures.  相似文献   

12.
Saturation of porous rocks with a mixture of two fluids (known as partial saturation) has a substantial effect on the seismic waves propagating through these rocks. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves, due to wave-induced fluid flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. As partial fluid saturation can occur on different length scales, attenuation due to wave-induced fluid flow is ubiquitous. In particular, mesoscopic fluid flow due to heterogeneities occurring on a scale greater than porescale, but less than wavelength scale, is responsible for significant attenuation in the frequency range from 10 to 1000 Hz.Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a periodic/regular way. In 1D this corresponds to periodically alternating layering, in 3D as periodically distributed inclusions of a given shape (usually spheres). All these models yield very similar estimates of attenuation and dispersion.Experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Therefore, theoretical models are required which would simulate the effect of more general and realistic fluid distributions.We have developed two theoretical models which simulate the effect of random distributions of mesoscopic fluid heterogeneities. The first model assumes that one fluid forms a random ensemble of spherical inclusions in a porous medium saturated by the other fluid. The attenuation and dispersion predicted by this model are very similar to those predicted for 3D periodic distribution. Attenuation (inverse quality factor) is proportional to ω at low frequencies for both distributions. This is in contrast to the 1D case, where random and periodically alternating layering shows different attenuation behaviour at low frequencies. The second model, which assumes a 3D continuous distribution of fluid heterogeneities, also predicts the same low-frequency asymptote of attenuation. However, the shapes of the frequency dependencies of attenuation are different. As the 3D continuous random approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental results. Further research is required in order to uncover how to relate the random functions to experimentally significant parameters.  相似文献   

13.
Experimental measurements of fracture-induced seismic waves velocity variations at frequencies ~ 1 kHz, ~ 40 kHz and ~ 1 MHz were performed directly in the field at the rocky outcrop and in the laboratory on specific rock samples collected from the outcrops. The peridotite–lherzolite outcrop appeared macroscopically uniform and contained three systems of visible parallel sub-vertical fractures. This rock has substantial bulk density and higher than average value of seismic wave velocity. The presence of fracture systems gives rise to its velocity anisotropy. The seismic waves passing through the rock fractures are subject to velocity dispersion and frequency dependent attenuation. Our data, obtained from field and laboratory measurements, were compared with theoretical model predictions. In this model we successfully used displacement discontinuity approach. For the velocity dispersion evaluation we used multi-frequency measurements. The a priori observation of orientations and densities of fracture sets allowed evaluation of their stiffness. Our approach revealed that the first arrivals of seismic waves can be used for evaluation of P-wave group velocities, the specific case, in which we expect anomalous velocity dispersion. Our observations contribute to the issue of up-scaling of well-log derived velocities in fractured rock to the scale of standard seismic exploration frequencies.  相似文献   

14.
The dependence of shear‐wave splitting in fractured reservoirs on the properties of the filling fluid may provide a useful attribute for identifying reservoir fluids. If the direction of wave propagation is not perpendicular or parallel to the plane of fracturing, the wave polarized in the plane perpendicular to the fractures is a quasi‐shear mode, and therefore the shear‐wave splitting will be sensitive to the fluid bulk modulus. The magnitude of this sensitivity depends upon the extent to which fluid pressure can equilibrate between pores and fractures during the period of the deformation. In this paper, we use the anisotropic Gassmann equations and existing formulations for the excess compliance due to fracturing to estimate the splitting of vertically propagating shear waves as a function of the fluid modulus for a porous medium with a single set of dipping fractures and with two conjugate fracture sets, dipping with opposite dips to the vertical. This is achieved using two alternative approaches. In the first approach, it is assumed that the deformation taking place is quasi‐static: that is, the frequency of the elastic disturbance is low enough to allow enough time for fluid to flow between both the fractures and the pore space throughout the medium. In the second approach, we assume that the frequency is low enough to allow fluid flow between a fracture set and the surrounding pore space, but high enough so that there is not enough time during the period of the elastic disturbance for fluid flow between different fracture sets to occur. It is found that the second approach yields a much stronger dependence of shear‐wave splitting on the fluid modulus than the first approach. This is a consequence of the fact that at higher wave frequencies there is not enough time for fluid pressure to equilibrate and therefore the elastic properties of the fluid have a greater effect on the magnitude of the shear‐wave splitting.  相似文献   

15.
Rayleigh wave dispersion can be induced in an anisotropic medium or a layered isotropic medium. For a layered azimuthally anisotropic structure, traditional wave equation of layered structure can be modified to describe the dispersion behavior of Rayleigh waves. Numerical stimulation results show that for layered azimuthal anisotropy both the dispersion velocities and anisotropic parameters depend principally on anisotropic S-wave velocities. The splitting S-wave velocities may produce dispersion splitting of Rayleigh waves. Such dispersion splitting appears noticeable at azimuthal angle 45°. This feature was confirmed by the measured results of a field test. The fundamental mode splits into two branches at azimuthal angle 45° to the symmetry axis for some frequencies, and along the same direction the difference of splitting-phase velocities of the fundamental model reaches the maximum. Dispersion splitting of Rayleigh waves was firstly displayed for anisotropy study in dispersion image by means of multichannel analysis of surface waves, the image of which provides a new window for studying the anisotropic property of media.  相似文献   

16.
In fractured reservoirs, seismic wave velocity and amplitude depend on frequency and incidence angle. Frequency dependence is believed to be principally caused by the wave‐induced flow of pore fluid at the mesoscopic scale. In recent years, two particular phenomena, i.e., patchy saturation and flow between fractures and pores, have been identified as significant mechanisms of wave‐induced flow. However, these two phenomena are studied separately. Recently, a unified model has been proposed for a porous rock with a set of aligned fractures, with pores and fractures filled with two different fluids. Existing models treat waves propagating perpendicular to the fractures. In this paper, we extend the model to all propagation angles by assuming that the flow direction is perpendicular to the layering plane and is independent of the loading direction. We first consider the limiting cases through poroelastic Backus averaging, and then we obtain the five complex and frequency‐dependent stiffness values of the equivalent transversely isotropic medium as a function of the frequency. The numerical results show that, when the bulk modulus of the fracture‐filling fluid is relatively large, the dispersion and attenuation of P‐waves are mainly caused by fractures, and the values decrease as angles increase, almost vanishing when the incidence angle is 90° (propagation parallel to the fracture plane). While the bulk modulus of fluid in fractures is much smaller than that of matrix pores, the attenuation due to the “partial saturation” mechanism makes the fluid flow from pores into fractures, which is almost independent of the incidence angle.  相似文献   

17.
Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner–Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.  相似文献   

18.
Extension of White's layered model to the full frequency range   总被引:1,自引:0,他引:1  
The low‐frequency theory of the White model to predict the dispersion and intrinsic attenuation in a single porous skeleton saturated with periodic layers of two immiscible fluids is extended to the full frequency range using the Biot theory. The extension is similar to the Dutta–Odé model for spherical inhomogeneities. Below the layer resonance frequency, the acoustic bulk properties for several gas–water fractions are in good agreement with the original White model. Deviations start to occur at higher frequencies due to the growing importance of resonance phenomena that were neglected in the original White model. The full model predicts significantly higher damping at sonic frequencies than the original White model. We also show that attenuation is significantly dependent on porosity variations. With realistic rock and fluid properties, a maximum attenuation of about 0.3 is found at seismic frequencies.  相似文献   

19.
The detection and characterisation of domains of intersecting fractures are important goals in several disciplines of current interest, including exploration and production of unconventional reservoirs, nuclear waste storage, CO2 sequestration, and groundwater hydrology, among others. The objective of this study is to propose a theoretical framework for quantifying the effects of fracture intersections on the frequency‐dependent elastic properties of fluid‐saturated porous and fractured rocks. Three characteristic frequency regimes for fluid pressure communication are identified. In the low‐frequency limit, fractures are in full pressure communication with the embedding porous matrix and with other fractures. Conversely, in the high‐frequency limit, fractures are hydraulically isolated from the matrix and from other fractures. At intermediate frequencies, fractures are hydraulically isolated from the matrix porosity but can be in hydraulic communication with each other, depending on whether fracture sets are intersecting. For each frequency regime, the effective stiffness coefficients are derived using the linear‐slip theory and anisotropic Gassmann equations. Explicit mathematical expressions for the two characteristic frequencies that separate the three frequency regimes are also determined. Theoretical predictions are then applied to two synthetic 2D samples, each containing two orthogonal fracture sets: one with and another without intersections. The resulting stiffness coefficients, Thomsen‐style anisotropy parameters, and the transition frequencies show good agreement with corresponding numerical simulations. The theoretical results are applicable not only to 2D but also to 3D fracture systems and are amenable to being employed in inversion schemes designed to characterise fracture systems.  相似文献   

20.
We address the issue of linearity and scale dependence in forward modelling of seismic data from well logs, for large ray parameters, wide angles or large offsets. We present a forward model, within the context of seismic‐to‐well matching, that is linearized in the elastic properties of the earth. This model preserves linearity at large ray parameters and can handle fine‐layering effects such as induced anisotropy. Starting from a low‐contrast small‐ray‐parameter model, we extend it to a large‐ray‐parameter model by fully linearizing the elastic‐property contrasts. Overall linearity of the forward model is extended by partitioning the compressional‐wave and shear‐wave velocity fields into two fundamental scales: a kinematic scale that governs wavefield propagation effects and a dynamic scale that governs wavefield scattering effects. This analysis reveals that the standard practice in forward modelling of strongly filtering the ratio of compressional‐wave velocity to shear‐wave velocity is well founded in the underlying physics. The partitioning of the velocity fields also leads naturally to forward modelling that accounts fully for stretch effects, to resolution of the angle‐of‐incidence versus ray‐parameter dichotomy in seismic‐amplitude analysis, and to full accounting for induced anisotropy and dispersion effects due to fine‐layering of isotropic media. With the onset of routine long‐offset acquisition and the compelling need to optimize asset management in order to maximize reserve recovery, this forward model recognizes the physics of seismic wave propagation and enables a more complete exploitation of amplitude information in pre‐critical seismic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号