首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
李刚  李予国  韩波  段双敏 《地球物理学报》2017,60(12):4887-4900
在海洋可控源电磁法勘探中,接收站常置于海底.在进行海洋电磁场模拟时,由于海水和海底介质存在显著电性差异,这给海底接收点处场值的求取带来困难.本文提出一种新的接收点插值算法,该算法考虑到海底电场法向分量不连续性问题,用法向电流分量进行插值以准确求取海底任意接收点处电磁场值.本文利用交错网格有限差分法实现了二维介质中频率域海洋可控源法(CSEM)正演.对构造走向做傅里叶变换,将三维电磁模拟问题转换为波数域2.5维问题,即三维场源激励下针对二维地电模型的电磁模拟问题.使用交错网格有限差分法,基于一次场/二次场分离方法导出波数域二次电场离散形式,并进一步求得波数域电磁场.采用本文提出的改进的插值算法可求得海底任意接收点处波数域电磁场,采用傅里叶逆变换对波数域电磁场进行积分可得到接收点处空间域电磁场.模型算例表明,与常规的线性插值和严格插值算法相比,本文提出的改进的插值算法具有更高的精度.  相似文献   

2.
We investigate the seismoelectric/electroseismic wavefields excited by a point source in an air/seawater/three-layered porous medium configuration containing a hydrocarbon layer. The results show that if an explosive source for excitation is used, receivers at seafloor can record the coseismic electromagnetic fields accompanying the P, S, fluid acoustic waves and the interface responses converted from the acoustic waves at seafloor interface and from the seismic waves at the interfaces beneath the seafloor. Employing a vertical electric dipole source shows that, with the exception of the interface responses converted from electromagnetic waves at seafloor, the interface responses converted from transmitted electromagnetic waves at the interfaces beneath the seafloor can also be identified. Given that the strength of the explosive source is within excitation capability of industry air guns, the generated interface responses from the hydrocarbon layer can be detected by current electromagnetic sensors considering the low ambient noise at the seafloor. Our results demonstrate the feasibility of the seismoelectric method applied to marine hydrocarbon exploration. Electroseismic modelling results suggest that it is not practical to employ this method to prospect marine hydrocarbon layer due to the weak interface response signal, unless a much larger current is injected into seafloor.  相似文献   

3.
海底油气藏及天然气水合物的时频电磁辨识   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了伪随机多频海洋电磁法观测方案.采用伪随机多频信号作为激励场源,多偏移距同线偶极-偶极同时观测,相关辨识海底地电系统的频率特性和冲激响应,可以在时间域和频率域同时辨识海底高阻薄层.在时间域,瞬变冲激时刻可以直接指示海底地层电导率的变化;在频率域,利用多个频率的电场响应计算的频散率及其道闻变化量,相对相位道间变化量对高阻薄层有很好的反映.从而实现对海底油气及天然气水合物的多参数辨识.  相似文献   

4.
罗鸣  李予国 《地球物理学报》2015,58(8):2851-2861
地下介质的电阻率常常表现为各向异性,海底裂隙地层和层状沉积序列可能形成宏观电阻率各向异性.在解释海洋电磁资料时,电阻率各向异性的影响不应该被忽略,否则可能会得到错误的海底地电模型.作者编写了电阻率任意各向异性一维层状介质海洋可控源电磁场计算程序,计算了电阻率各向异性层状模型的海洋可控源电磁响应,讨论了覆盖层和高阻储层分别具有电阻率各向异性时的电磁场响应特征.  相似文献   

5.
为更好地处理与解释复杂海底地形条件下测得的海洋可控源电磁数据,本文提出了一种基于非结构网格剖分的频率域海洋可控源电磁数据三维正则化反演方法.该方法首先对海洋地电模型以非结构四面体单元进行离散,然后基于矢量有限元方法获得海洋可控源电磁响应和灵敏度信息,最后采用共轭梯度法求解高斯-牛顿反演方程计算模型修正量.为提高反演的稳定性,通过在反演过程中采用对数转换方法实现反演模型参数的上下限约束.本文分别测试了单测线水平海底地形反演算例和面积性测量的起伏海底地形反演算例.反演结果表明,本文提出的频率域海洋可控源电磁三维反演能够准确地恢复高阻储油层的位置和电阻率信息,且计算效率较高,可用于实测海洋电磁资料的处理与解释.  相似文献   

6.
本文实现了2.5维电导率正交各向异性海洋可控源电磁等参有限元数值模拟.利用傅里叶变换导出了电导率正交各向异性2.5维海洋可控源电磁法波数域电磁场耦合方程,采用伽里金加权余量法推导了相应的有限元方程;采用任意四边形单元对研究区域进行剖分,在单元中进行双二次插值,将有限元方程化为线性代数方程组;最后,求解线性方程组并进行反傅里叶变换获得空间域电磁场值.这个方法可以模拟海底起伏地形条件下地下任意形状电导率正交各向异性的复杂模型.与一维模型的数值模拟结果对比表明,电磁场数值解与解析解吻合.二维模型的计算结果与二维自适应非结构有限元模拟结果也吻合.水平海底二维地电模型考察了不同各向异性系数对海洋可控源电磁响应的影响特征.海底起伏地形地电模型的数值结果表明,电导率各向异性对海洋可控源电磁响应影响明显,有可能淹没海底地形和高阻油气藏引起的异常.  相似文献   

7.
罗鸣  李予国  李刚 《地球物理学报》2016,59(11):4349-4359
本文提出了一维垂直各向异性(VTI)介质倾斜偶极源频率域海洋可控源电磁(CSEM)资料高斯-牛顿反演方法.在电阻率各向异性介质水平偶极源和垂直偶极源海洋CSEM正演算法的基础上,利用欧拉旋转方法,实现了各向异性介质倾斜偶极源海洋CSEM正演算法.海洋可控源电磁场关于地下介质横向电阻率(ρ_h)和垂向电阻率(ρ_v)的偏导数(即灵敏度矩阵)是解析计算的,结合垂直各向异性介质横向电阻率与垂向电阻率的关系,将各向异性率融入到正则化因子选择中,实现了正则化因子的自适应选择.理论模型合成数据和实测资料反演算例表明,我们提出的反演方法能够较准确的重构海底围岩和基岩的各向异性电阻率以及高阻薄层的埋藏深度、厚度和垂向电阻率.  相似文献   

8.
徐震寰  李予国 《地球物理学报》2019,62(12):4874-4885
海底采集到的电磁数据按照其主要包含的信息及研究目的大致可分为海洋可控源电磁场(CSEM)信号、天然场源大地电磁场(MT)信号、海洋环境电磁场信号以及其他随机干扰信号.常常通过计算功率谱密度、时频分析和极化分析的方法研究海洋电磁场特征.本文介绍一种新方法——时频方向谱分析法及其在实测海洋电磁数据处理中的应用,该方法能够在一定的时间-频率尺度上有效分辨场源信号的运动方向.对于海洋CSEM数据,利用该方法可以估算发射源的运动方向,进而在发射源或采集站方位信息缺失情况下,实现海洋CSEM数据的旋转电性轴处理.对于海洋电磁数据,利用该方法可以详细分析海水运动感应电磁场的信号特征.  相似文献   

9.
本文基于非结构网格实现了海洋可控源电磁法三维有限元正演模拟.该算法采用完全非结构网格剖分,可以模拟任意起伏地形和复杂地电模型.为了避免场源的奇异性,采用一次场/二次场分解算法,一次场由基于Schelkunoff势函数的一维解析公式得到.为了提高算法的精度和效率,采用对测点附近单元和异常体区域进行体积约束加密的方法,实现了非结构网格的局部加密.一、二维模型计算和分析表明,本文采用的局部加密方法能够明显地改善算法的精度,最大相对误差基本在1%以内.对三维模型计算及对比分析,说明了该算法对三维可控源电磁正演的实用性.复杂海底地形模型的正演模拟表明,海底地形对电磁场的影响很大,在进行海洋可控源电磁资料解释时,地形的影响有必要考虑在内.  相似文献   

10.
The time-domain controlled source electromagnetic method is a geophysical prospecting tool applied to image the subsurface resistivity distribution on land and in the marine environment. In its most general set-up, a square-wave current is fed into a grounded horizontal electric dipole, and several electric and magnetic field receivers at defined offsets to the imposed current measure the electromagnetic response of the Earth. In the marine environment, the application often uses only inline electric field receivers that, for a 50% duty-cycle current waveform, include both step-on and step-off signals. Here, forward and inverse 1D modelling is used to demonstrate limited sensitivity towards shallow resistive layers in the step-off electric field when transmitter and receivers are surrounded by conductive seawater. This observation is explained by a masking effect of the direct current signal that flows through the seawater and primarily affects step-off data. During a step-off measurement, this direct current is orders of magnitude larger than the inductive response at early and intermediate times, limiting the step-off sensitivity towards shallow resistive layers in the seafloor. Step-on data measure the resistive layer at times preceding the arrival of the direct current signal leading to higher sensitivity compared to step-off data. Such dichotomous behaviour between step-on and step-off data is less obvious in onshore experiments due to the lack of a strong overlying conductive zone and corresponding masking effect from direct current flow. Supported by synthetic 1D inversion studies, we conclude that time-domain controlled source electromagnetic measurements on land should apply both step-on and step-off data in a combined inversion approach to maximize signal-to-noise ratios and utilize the sensitivity characteristics of each signal. In an isotropic marine environment, step-off electric fields have inferior sensitivity towards shallow resistive layers compared to step-on data, resulting in an increase of non-uniqueness when interpreting step-off data in a single or combined inversion.  相似文献   

11.
南海天然气水合物远景区海洋可控源电磁探测试验   总被引:4,自引:4,他引:0       下载免费PDF全文
为了测试我国自主设计与研发的海洋可控源电磁仪器性能及其在水合物探测中的适用性,本文从海洋可控源电磁法基本原理出发,首先根据试验海域水合物地质特征,建立简化地电模型开展理论研究,确定海洋可控源电磁试验的技术方案;利用研发的海洋可控源电磁仪器,在南海天然气水合物远景区开展探测试验,首次获得了我国深水海域的海洋可控源电磁数据.通过对采集数据进行处理与反演,获得了试验剖面的海底电性结构模型,揭示了4号测点下方存在一个50m厚的高阻层,其电阻率为25Ωm、顶部埋深为181m,为该区天然气水合物调查提供了有价值的电性参考资料.研究结果表明,自主研发的海洋可控源电磁仪器性能达到了预期的设计指标,这标志着我国海洋可控源电磁探测技术向实用化进程迈出了重要一步.  相似文献   

12.
海底电性源频率域CSEM勘探建模及水深影响分析   总被引:4,自引:3,他引:1       下载免费PDF全文
为了探索我国海域油气和水合物等高阻目标体CSEM勘探的可行性和方法技术,本文研究了在海水中水平电性源激励下有限水深海洋地电模型的频率域电磁响应,为进一步的1D和3D仿真计算奠定了理论基础.在推导电磁响应公式时,首先给出了各层介质的Lorentz势,然后根据Coulomb势与Lorentz势的关系,得到了各层介质的Coulomb势.各层介质中的电磁场均可以由Lorentz势或者Coulomb势计算得到,但在有限元计算时Coulomb势具有优势.长导线源的电磁场和势函数可以由电偶源的电磁场和势函数沿导线长度积分得到.文中具体给出了海水中水平电偶源和长导线源在海水层的电磁场公式,并根据该公式计算了不同水深环境下海底表面的电磁场分布,分析了海水深度对海底油气储层电磁异常的影响.结果表明,随着水深减小,异常幅度和形态特征发生明显变化.当水深很浅时(如50 m),只有同线方向的Ex和Ez两个电场分量存在明显异常.最后,以两个已知海底油田为例,计算了不同水深环境下可观测到的电场异常,展示了电性源频率域CSEM在海底勘探中(包括浅海环境)的良好应用前景.对于该方法实用化过程中还需进一步解决的问题,文中结尾部分也进行了初步探讨.  相似文献   

13.
海底油气藏地质模型的冲激响应   总被引:7,自引:5,他引:2       下载免费PDF全文
海洋可控源电磁法(mCSEM)的时间域冲激响应特征可以反映海底油气高阻薄层.本文计算了水平电偶极子源均匀大地半空间,海洋均匀双半空间和海洋四层模型的阶跃响应和冲激响应,提出了瞬变冲激时刻的概念.分析了水平电偶源瞬变冲激时刻与介质电导率的指示关系.对于海底油气高阻薄层宜采用多偏移距同时测量方式,由于在低电导率介质中电磁能量传播得要快,在适当的收发距瞬变冲激时刻会提前到达,提出的瞬变冲激时刻道间变化量可以明确指示高阻薄层的存在及埋深.文中还分析了海水深度对瞬变冲激时刻的影响.由于“天波”干扰,瞬变冲激响应受到一定收发距观测的限制.消除 “天波”影响是时间域和频率域mCSEM数据处理的研究热点.  相似文献   

14.
A dual-ship-towed marine electromagnetic (EM) system is a new marine exploration technology recently being developed in China. Compared with traditional marine EM systems, the new system tows the transmitters and receivers using two ships, rendering it unnecessary to position EM receivers at the seafloor in advance. This makes the system more flexible, allowing for different configurations (e.g., in-line, broadside, and azimuthal and concentric scanning) that can produce more detailed underwater structural information. We develop a three-dimensional goal-oriented adaptive forward modeling method for the new marine EM system and analyze the responses for four survey configurations. Oceanbottom topography has a strong effect on the marine EM responses; thus, we develop a forward modeling algorithm based on the finite-element method and unstructured grids. To satisfy the requirements for modeling the moving transmitters of a dual-ship-towed EM system, we use a single mesh for each of the transmitter locations. This mitigates the mesh complexity by refining the grids near the transmitters and minimizes the computational cost. To generate a rational mesh while maintaining the accuracy for single transmitter, we develop a goal-oriented adaptive method with separate mesh refinements for areas around the transmitting source and those far away. To test the modeling algorithm and accuracy, we compare the EM responses calculated by the proposed algorithm and semi-analytical results and from published sources. Furthermore, by analyzing the EM responses for four survey configurations, we are confirm that compared with traditional marine EM systems with only in-line array, a dual-ship-towed marine system can collect more data.  相似文献   

15.
We developed a new marine controlled‐source electromagnetic receiver for detecting methane hydrate zones and oil and gas reservoirs on the seafloor, which is not imaged well by seismic reflection surveys. To determine the seafloor structure, the electromagnetic receiver should have low noise, power consumption, clock drift error, and operating costs while being highly reliable. Because no suitable receiver was available in our laboratory, we developed a new marine controlled‐source electromagnetic receiver with these characteristics; the receiver is equipped with acoustic telemetry modem and an arm‐folding mechanism to facilitate deployment and recovering operations. To demonstrate the applicability of our new receiver, we carried out a field experiment offshore of Guangzhou in the South China Sea, where methane hydrates have been discovered. We successfully obtained controlled‐source electromagnetic data along a profile about 13 km long. All six new receivers were recovered, and high‐quality electromagnetic data were obtained. Relatively high apparent resistivity values were detected. The results of the offshore field experiment support the claim that the electromagnetic data obtained using the new receiver are of sufficient quality for the survey target.  相似文献   

16.
Navigating marine electromagnetic transmitters using dipole field geometry   总被引:3,自引:0,他引:3  
The marine controlled source electromagnetic (CSEM) technique has been adopted by the hydrocarbon industry to characterize the resistivity of targets identified from seismic data prior to drilling. Over the years, marine controlled source electromagnetic has matured to the point that four‐dimensional or time lapse surveys and monitoring could be applied to hydrocarbon reservoirs in production, or to monitor the sequestration of carbon dioxide. Marine controlled source electromagnetic surveys have also been used to target shallow resistors such as gas hydrates. These novel uses of the technique require very well constrained transmitter and receiver geometry in order to make meaningful and accurate geologic interpretations of the data. Current navigation in marine controlled source electromagnetic surveys utilize a long base line, or a short base line, acoustic navigation system to locate the transmitter and seafloor receivers. If these systems fail, then rudimentary navigation is possible by assuming the transmitter follows in the ship's track. However, these navigational assumptions are insufficient to capture the detailed orientation and position of the transmitter required for both shallow targets and repeat surveys. In circumstances when acoustic navigation systems fail we propose the use of an inversion algorithm that solves for transmitter geometry. This algorithm utilizes the transmitter's electromagnetic dipole radiation pattern as recorded by stationary, close range (<1000 m), receivers in order to model the geometry of the transmitter. We test the code with a synthetic model and validate it with data from a well navigated controlled source electromagnetic survey over the Scarborough gas field in Australia.  相似文献   

17.
We present a method to unify the calculation of Green’s functions for an electromagnetic (EM) transmitting source embedded in a homogeneous stratified medium. A virtual interface parallel to layer interfaces is introduced through the source location. The potentials for Green’s function are derived by decomposing the partial wave solutions to Helmholtz’s equations into upward and downward within boundaries. The amplitudes of the potentials in each stratum are obtained recursively from the initial amplitudes at the source level. The initial amplitudes are derived by coupling with the transmitting sources and following the discontinuity of the tangential electric and magnetic fields at the source interface. Only the initial terms are related to the transmitting sources and thus need to be modified for different transmitters, whereas the kernel connected with the stratified media stays unchanged. Hence, the present method can be easily applied to EM transmitting sources with little modification. The application of the proposed method to the marine controlled-source electromagnetic method (MCSEM) demonstrates its simplicity and flexibility.  相似文献   

18.
可控源海洋电磁勘探(MCSEM)中空气波对海底电磁响应的影响已为业界所熟知,且已提出了多种压制方法.然而,由于空气波与海水层中其它信号相互作用的复杂性,至今其作用机理及对有效信号的影响方式尚未完全清楚,这也阻碍了浅水域MCSEM油气勘探的应用.本文在前人研究的基础上, 基于一维层状介质的电磁位和电磁场分析,采用电磁场的模式分解理论导出了空气、海水层和海底地层之间的相互作用关系.分析了MCSEM电磁响应的影响因素和空气波的作用机理.以无限水深假想模型、三层介质模型和四层介质模型为基础,导出了水平电偶极子(HED)的横电(TE)和横磁(TM)模式的电磁场关系,分析显示了前人提出的上下行波分离进行空气波压制所存在的缺陷.通过理论和数值模拟知道, 利用横电(TE)和横磁(TM)模式受空气相互作用影响的差异和电磁场水平分量与垂直分量受空气层相互作用影响程度的不同可减弱空气波对有效信号的影响,这将有助于实现浅水域海洋电磁勘探数据的有效利用.  相似文献   

19.
We study a new marine electromagnetic configuration that consists of a ship‐towed inductive source transmitter and a series of remote electric dipole receivers placed on the seafloor. The approach was tested at the Palinuro Seamount in the southern Tyrrhenian Sea, at a site where massive sulphide mineralization has been previously identified by shallow drilling. A 3D model of the Palinuro study area was created using bathymetry data, and forward modelling of the electric field diffusion was carried out using a finite volume method. These numerical results suggest that the remote receivers can theoretically detect a block of shallowly buried conductive material at up to ~100 m away when the transmitter is located directly above the target. We also compared the sensitivity of the method using either a horizontal loop transmitter or a vertical loop transmitter and found that when either transmitter is located directly above the mineralized zone, the vertical loop transmitter has sensitivity to the target at a farther distance than the horizontal loop transmitter in the broadside direction by a few tens of metres. Furthermore, the vertical loop transmitter is more effective at distinguishing the seafloor conductivity structure when the vertical separation between transmitter and receiver is large due to the bathymetry. As a horizontal transmitter is logistically easier to deploy, we conducted a first test of the method with a horizontal transmitter. Apparent conductivities are calculated from the electric field transients recorded at the remote receivers. The analysis indicates higher apparent seafloor conductivities when the transmitter is located near the mineralized zone. Forward modelling suggests that the best match to the apparent conductivity data is obtained when the mineralized zone is extended southward by 40 m beyond the zone of previous drilling. Our results demonstrate that the method adds value to the exploration and characterization of seafloor massive sulphide deposits.  相似文献   

20.
Gas hydrates are a potential energy resource, a possible factor in climate change and an exploration geohazard. The University of Toronto has deployed a permanent seafloor time‐domain controlled source electromagnetic (CSEM) system offshore Vancouver Island, within the framework of the NEPTUNE Canada underwater cabled observatory. Hydrates are known to be present in the area and due to their electrically resistive nature can be monitored by 5 permanent electric field receivers. However, two cased boreholes may be drilled near the CSEM site in the near future. To understand any potential distortions of the electric fields due to the metal, we model the marine electromagnetic response of a conductive steel borehole casing. First, we consider the commonly used canonical model consisting of a 100 Ωm, 100 m thick resistive hydrocarbon layer embedded at a depth of 1000 m in a 1 Ωm conductive host medium, with the addition of a typical steel production casing extending from the seafloor to the resistive zone. Results show that in both the frequency and time domains the distortion produced by the casing occurs at smaller transmitter‐receiver offsets than the offsets required to detect the resistive layer. Second, we consider the experimentally determined model of the offshore Vancouver Island hydrate zone, consisting of a 5.5 Ωm, 36 m thick hydrate layer overlying a 0.7 Ωm sedimentary half‐space, with the addition of two borehole casings extending 300 m into the seafloor. In this case, results show that the distortion produced by casings located within a 100 m safety zone of the CSEM system will be measured at 4 of the 5 receivers. We conclude that the boreholes must be positioned at least 200 m away from the CSEM array so as to minimize the effects of the casings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号