首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
赵玮  郝翠  曹洁  周璇  卢俐 《大气科学》2022,46(5):1167-1176
利用北京地区20个国家站1980~2020年的长期逐时降水资料,分析了北京夏季降水的基本气候特征和日变化时空分布特征。结果表明:(1)北京地区夏季40年平均降水量分布具有西北山区小,平原大,山区向平原过渡区的迎风坡最大的特点;降水频率则相反,平原降水频率整体小于山区;降水强度整体表现为西北弱,东部强,城区与南部居中的特点。北京夏季降水的强度和极端性较强,致灾风险高。(2)北京夏季平均降水量日变化主体呈单峰型,降水频次为双峰型,降水强度为多峰型,三者同时在22时(北京时,下同)达到最大,在12时最小。(3)降水的峰值时间随月份依次后推,6月最早,7月次之,8月最晚;峰值雨量7月最大,8月次之,6月最小。(4)降水量、降水频率和降水强度的日峰值空间分布具有较强的一致性,西北山区四站出现在20时以前,其余16站出现在20时及以后。使用K均值聚类算法将20站划分为两个区域,结果显示两个区域的降水量、降水频率和强度的日变化具有完全不同的分布特点。(5)近40年北京地区的降水结构在不断调整,短持续时间降水主导期和长持续时间降水主导期交替出现。2000年以前以小于6小时的短持续性降水为主,近15年大于6小时的长持续性降水明显增多。  相似文献   

2.
基于聚类分区的中国夏季降水预测模型   总被引:1,自引:0,他引:1  
文章基于近邻传播客观聚类方法对中国夏季降水进行了气候分区,以中国不同分区的夏季降水为预测对象,使用前期的海温和海平面气压场为预测因子,利用图像标签算法提取高相关封闭区域的预测因子信息。结合最小二乘回归法建立预测模型。采用Ps评分、距平符号一致率和距平相关系数三种评分方法检验了该预测模型,比较了四种不同的因子配置方案的预测能力。研究结果表明,利用冬春季海温的演变特征结合海平面气压的年际变化为预测因子的分区预测模型效果较好,在1982—2009年期间的平均交叉检验平均Ps得分为81.4,距平符号一致率为63%,距平相关系数为0.35,2010—2014期间的独立样本预测检验的平均评分分别为77.1,58%和0.19,且逐年回报效果较为稳定,表明该方法对中国夏季降水有较好的预测效果。研究结果显示,该预测模型能较好地预测出2014年中国夏季降水南多北少的分布特征。  相似文献   

3.
辽宁省夏季降水的日变化特征   总被引:2,自引:0,他引:2  
杨森  周晓珊  高杰 《气象》2011,37(8):943-949
文章利用辽宁省25个气象观测站1961—2008年夏季6—8月的逐时降水自记资料,分析了辽宁省夏季降水日变化的基本特征。发现:降水日变化特征地域性较强,沿海站与内陆站存在差异。总体来说,沿海站降水量的最大值基本出现在午前04-08时,内陆站点则呈双峰值的形式,峰值分别出现在午前和午后,午后1 4—20时为降水量最大值出现的时间;降水频次的日变化特征和降水量基本相同;持续时间长的降水多在午前达到峰值,持续时间短的降水多在午后达到峰值;沿海站点午前的降水峰值区基本是由持续时间在6 h以上的长时间降水造成,内陆站点午后最大降水峰值则为持续时间6 h以内的短时降水,这与内陆下午对流能量强相适应。研究表明,降水日变化的存在能够影响到降水预报的评分。  相似文献   

4.
新疆夏季降水日变化特征   总被引:2,自引:2,他引:2       下载免费PDF全文
利用1991-2014年新疆16个国家基准气象站逐时降水资料,分析了新疆夏季不同区域降水日变化基本特征,揭示出新疆夏季降水日变化呈现显著的南、北疆区域差异,有别于我国中东部的一些新事实。结果显示:北疆降水量日变化呈现准单峰型特征,峰值主要发生在傍晚前后(16:00-20:00,地方时,下同);南疆降水量日变化呈现三峰特征,峰值分别出现在傍晚(17:00-18:00)、午夜后(00:00-01:00)和上午(10:00)。新疆夏季降水事件以6 h以内的短历时性质为主(平均为85%,比例明显高于我国中东部),而持续12 h以上的较长历时降水事件偶有发生;在天山东麓以外的新疆绝大部分地区,6 h以内短历时降水事件对总降水量的贡献率达54%,高于我国中东部地区。新疆西部和北疆北部降水量日变化主峰的贡献者是2~3 h短持续性降水为主的事件;而天山中-东部降水量日变化峰值则是来自于12 h内各不同持续时间降水事件的大致均等贡献。  相似文献   

5.
应用基于等价关系的模糊聚类分析方法,取λ=0.85为水平截集,将铜仁市1980-1990年11年的样本归为5类。对1991-1994年铜仁市夏季降雨量进行了试验检验,准确率达100%,1995年投入业务使用,效果较好。  相似文献   

6.
湖南夏季降水日变化特征   总被引:10,自引:2,他引:10       下载免费PDF全文
戴泽军  宇如聪  陈昊明 《高原气象》2009,28(6):1463-1470
利用湖南96个测站13年的逐时自记降水资料, 分析了夏季(6~8月)降水日变化特征。结果表明, 湖南夏季降水日变化呈现显著的区域差异。湘东南降水量、 降水频次峰值主要出现在午后到傍晚, 而其它地区的降水峰值一般出现在清晨。进一步分析显示, 降水频次峰值出现时次分布更集中, 区域特征更鲜明。湘西北、 湘东南区域平均的累积降水量、 降水频次及降水强度的日变化在清晨和午后均呈双峰型特征。湘西北主(次)峰值出现的时间大致与湘东南次(主)峰值出现的时间对应。同时, 降水日变化与降水持续时间密切相关。持续5~10 h降水事件是持续1~4 h事件与持续10 h以上事件降水量峰值出现时间发生显著变化的过渡降水事件。持续1~4 h(10 h以上)的降水事件的极值降水始发时间为午后至傍晚(夜间)。在不同持续时间的降水事件中, 持续2 h降水的累积量最大。  相似文献   

7.
彭莉莉  邓剑波  谢傲 《暴雨灾害》2020,28(2):201-206

利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日—2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。

  相似文献   

8.
湖北省夏季降水日变化特征   总被引:1,自引:2,他引:1       下载免费PDF全文
利用2001—2014年湖北省77个气象观测站的整点逐时降水数据,通过划分不同区域和三种量级降水的方法,分析了夏季(6—8月)降水日变化特征。结果表明:1)湖北省夏季降水日变化特征非常明显,降水量曲线呈双峰结构,峰值出现在08时和17时(北京时间,下同),降水频次与降水强度均呈现"一主一次"的双峰结构,这主要与青藏高原东移来的天气系统自西向东的滞后性以及局地热力强迫有关,发生在傍晚(15—18时)的降水强度有明显的年际增强趋势。2)湖北省降水日变化特征区域差异显著,鄂西北与鄂西南降水峰值主要出现在傍晚和夜间,谷值出现在正午,鄂东三个区域的降水峰值出现在上午和傍晚,谷值出现在午夜。3)近14 a强度为0~20 mm/h的降水呈现减少趋势,主要发生在鄂西地区。其日变化曲线为"一主一次"的双峰结构,主(次)峰值出现在07(17)时。与之相反,短时强降水(≥20 mm/h)的发生概率东部大于西部,平原大于山区,有增加趋势的站点占总站点数的53.24%,峰(谷)值出现在17(12)时。短时特大强降水(≥50 mm/h)峰值出现在15—20时,03—14时出现概率较低。  相似文献   

9.
公颖  周小珊  董博 《暴雨灾害》2018,66(4):373-382

利用国家气象信息中心提供的2008—2013年6—8月中国自动站逐小时降水资料与CMORPH(CPC MORPHing technique)卫星反演降水资料融合生成的逐小时融合降水产品(0.1°网格数据集)和2001—2012年6—8月的NCEP 1°×1°再分析资料,对辽宁省夏季降水时空分布特征及其成因进行了较为深入统计、分析,结果表明:(1)辽宁省平均日降水频率的大值区位于辽东地区,这与该地区位于千山—龙岗山山区和夏季低层盛行偏南风密切相关。(2)辽宁地区平均小时降水率大值区也分布在辽东,辽东南为大值区的中心,主要原因为其一,该地区位于中低层比湿场的湿舌处,其二,该地区夏季中低层盛行的西南风遇千山—龙岗山被迫抬升形成中低层上升速度中心。(3)辽宁省降水日变化特征明显:辽西山区、辽宁西北部、辽东—东南部山区为午后到前半夜降水峰值频发区,而中部平原地区、南部沿海地区为凌晨降水峰值频发区。(4)地理环境决定的局地热力、动力过程和天气系统同时影响日降水峰值发生时间,当天气系统较为稳定的处于发展初期和后期时,其影响区域内降水日变化符合前述规律,但当天气系统明显发展或移动,其影响区域内日降水峰值多数发生在该时刻附近。(5)降水日变化规律与天气类型关系不是很大,即在各类天气系统诱发的降水过程中,由地理环境决定的降水日变化规律均存在。(6)辽宁地区西部山地高原、中部平原、东部山地丘陵、南临海洋的独特地理环境决定的局地热力、动力环流及夜间到凌晨加强的由海到陆的西南风暖湿气流是其降水日变化特征的产生的主要原因。

  相似文献   

10.
利用川渝地区1991~2012年夏季逐小时降水资料,分析该地区总降水、极端降水时空分布特征,特别是极端降水的日变化特征。结果表明,川渝地区受西高东低的地形影响,降水量总量(precipitation amounts,简称PA)也呈西少东多分布,具体是川西北高原少、川西南山地及东部盆地多,盆周山区多、盆中丘陵区少;降水频率(precipitation frequency,简称PF)则呈西高东低的相反分布,高原地区PF较高;降水强度(precipitation intensity,简称PI)的分布与PA较为一致,自西向东逐渐增强。极端降水的PA、PF、PI空间分布特征与总降水的空间分布特征相似。东部的四川盆地乐山、雅安地区和达州、广元地区,以及西南山地区的西昌、攀枝花地区的PA大主要是由于PI大。西昌地区北方小部分西南山地区的PA大主要是由于PF大。川西高原区PA小是因为PI小。PA日峰值自西向东递增,PF日峰值呈相反变化趋势,自西向东递减。两者几乎全部都出现在夜间,“夜雨”特征显著。海拔较高的地区日峰值大多出现在前半夜,而海拔较低的地区大多出现在后半夜,自西向东日峰值出现时间逐渐推迟,因...  相似文献   

11.
中南半岛地区夏季降水日变化特征   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)3B42RT和3G68 PR 1998-2005年8 a的观测资料,研究了中南半岛地区夏季(6-8月)降水日变化特征.结果表明:整个夏季,中南半岛西侧沿海和长山山脉西侧迎风坡为降水大值区和降水日方差大值区.陆地上平原地区和远海海面降水主要出现在16-19LST(local standard time);沿海海面在07-10LST达到降水最大值.降水在白天由沿海分别向内陆和远海海面传播;夜间,降水从远海海面向沿海地区回传,但没有发现内陆向沿海地区回传.长山山脉西侧迎风坡的一南一北两个区域,表现出明显不同的降水日变化特征,其原因与降水的传播有关.01-04LST,降水大值区出现在泰国湾东部沿海,并向中南半岛岛内传播,16-19LST在长山山脉西南侧形成降水大值区,之后降水进一步沿山脉向西北传播,并于次日01-04LST传到长山山脉西北侧区域,通过降水的这种传播特征从而导致长山山脉迎风坡一侧不同的降水日变化特征.  相似文献   

12.
利用ISCCP(International Satellite Cloud Climatology Project)最新的D2云气候资料集,分析了1988至2007年6—8月我国云顶气压的空间分布及变化趋势,并结合中国气象局国家气象信息中心发布的中国均一化历史气温、相对湿度和大气压强数据集,进行了相关分析,讨论了其变化...  相似文献   

13.
华北地区夏季降水日变化的时空分布特征   总被引:3,自引:2,他引:3  
韩函  吴昊旻  黄安宁 《大气科学》2017,41(2):263-274
利用2008~2014年间全国自动站观测降水和CMORPH[CPC(Climate Prediction Center)morphing technique]卫星反演降水资料融合而成的0.1°×0.1°小时降水产品揭示了华北夏季降水的日变化特征,发现华北多数地区夏季降水量和降水频率日变化呈现出明显的双峰特征且存在明显的区域性差异。在太行山以西地区,降水量和降水频率的日峰值出现在傍晚18:00左右(北京时),规律性最强;而在太行山以东的平原和沿海地区,日峰值一般出现在上午。研究不同持续时间降水对总降水的贡献发现短时降水对傍晚的降水日峰值贡献较大,而长时降水则对凌晨的峰值影响更大。分析不同强度降水对总降水量的贡献结果表明,0.1~10 mm h-1强度降水较其它强度降水对夏季华北地区总降水量贡献更大,随着降水强度的增加降水量日变化的峰值个数增加。  相似文献   

14.
Short-duration heavy rainfall(SDHR) is a type of severe convective weather that often leads to substantial losses of property and life. We derive the spatiotemporal distribution and diurnal variation of SDHR over China during the warm season(April–September) from quality-controlled hourly raingauge data taken at 876 stations for 19 yr(1991–2009), in comparison with the diurnal features of the mesoscale convective systems(MCSs) derived from satellite data. The results are as follows. 1) Spatial distributions of the frequency of SDHR events with hourly rainfall greater than 10–40 mm are very similar to the distribution of heavy rainfall(daily rainfall 50 mm) over mainland China. 2) SDHR occurs most frequently in South China such as southern Yunnan, Guizhou, and Jiangxi provinces, the Sichuan basin, and the lower reaches of the Yangtze River, among others. Some SDHR events with hourly rainfall 50 mm also occur in northern China, e.g., the western Xinjiang and central-eastern Inner Mongolia. The heaviest hourly rainfall is observed over the Hainan Island with the amount reaching over 180 mm. 3) The frequency of the SDHR events is the highest in July, followed by August. Analysis of pentad variations in SDHR reveals that SDHR events are intermittent, with the fourth pentad of July the most active. The frequency of SDHR over mainland China increases slowly with the advent of the East Asian summer monsoon, but decreases rapidly with its withdrawal. 4) The diurnal peak of the SDHR activity occurs in the later afternoon(1600–1700 Beijing Time(BT)), and the secondary peak occurs after midnight(0100–0200 BT) and in the early morning(0700–0800 BT); whereas the diurnal minimum occurs around late morning till noon(1000–1300 BT). 5) The diurnal variation of SDHR exhibits generally consistent features with that of the MCSs in China, but the active periods and propagation of SDHR and MCSs difer in diferent regions. The number and duration of local maxima in the diurnal cycles of SDHR and MCSs also vary by region, with single, double, and even multiple peaks in some cases. These variations may be associated with the diferences in large-scale atmospheric circulation, surface conditions, and land-sea distribution.  相似文献   

15.
东北地区夏季降水时空变化特征   总被引:26,自引:4,他引:26       下载免费PDF全文
采用东北地区99个测站1960~2000年逐日降水资料,运用小波分析、突变分析、旋转EOF等方法,研究了东北地区不同区域夏季降水的长期变化特征。结果表明,东北地区夏季降水呈减少趋势,并存在14年和2~4年的变化周期。东北地区夏季降水异常可分为5种空间分布类型:东北西南部型、东北东南部型,东北东北部型、东北西北部型、东北中部型。东北东南部地区夏季降水减少趋势最明显,东北西南部降水的增加趋势最明显。各区域降水的变化周期有所区别,东北东北部存在16~18年的变化周期,其它地区存在10~14年的变化周期,各区域降水突变的时间主要在60年代和80年代。  相似文献   

16.
近10年夏季西北地区水汽空间分布和时间变化分析   总被引:5,自引:0,他引:5  
利用NCEP 1°×1°再分析资料对近10年(2000-2009年)夏季西北地区整层大气水汽的时空分布进行了分析。结果表明:(1)近10年西北地区夏季大气可降水量和水汽通量分布呈两头多、中间少。700~200hPa的水汽通量值要比地面至700hPa的大,在南疆盆地,地面至700hPa的水汽通量值比700~200hPa的大,水汽通量在600~450hPa之间比较丰富;(2)整层水汽通量散度辐合区对降水落区的预报具有指导意义,除甘肃河西地区外,其他地区低层(700hPa以下)和高层(700hPa以上)的水汽通量散度呈反位相分布。(3)近10年西北地区水汽输送主要来自西风带在青藏高原西侧分为南北两支所携带的水汽、孟加拉湾的水汽随西南风输送以及西风带爬上青藏高原沿高原南边输送,而造成整层水汽通量年变化的主要原因是西风带输送水汽能力的大小。(4)近10年西北地区整层水汽通量呈线性增加,整层水汽通量的年变化趋势基本上可以指示地面降水的年变化趋势。(5)西北地区近10年夏季水汽来源主要以经向输送为主,纬向水汽通量对于西北区水汽净收支起决定作用。  相似文献   

17.
淮河流域夏季降水空间变率研究   总被引:3,自引:1,他引:3  
在GCMS(大气环流模式)中,降水空间分布描述在陆面水文参数化中非常重要.利用1998-2003年淮河流域一个网格区域内32个站夏季逐小时降水资料,分析降水在区域内统计特征,并利用统计特征及一个随机降水离散方案实现平均降水强度在区域内分配.结果表明,在区域内降水空间分布是非均匀的,区域内的平均降水强度和区域内降水分布面积之间有密切关系,取一定平均降水强度间隔,降水分布面积和发生频率满足固定的分布形态.随机降水离散方案可以较好实现降水在区域内分配.  相似文献   

18.
我国西南地区夏季降水异常的区域特征   总被引:24,自引:3,他引:24  
采用旋转经验正交展开(REOF)方法,对我国西南地区49a夏季降水标准化距平场进行客观分区,并分析了各区夏季降水异常的长期变化趋势。结果表明,西南地区夏季降水量场可以分为5个区域,该5区均具有显著的年代际变化特征,且近50a来它们的旱涝变化存在着显著差异,其中川西、川东和贵州降水的长期变化趋势不明显,而四川盆地和云南显著变干。  相似文献   

19.
Summary Rainfall amounts and the distribution across the landscape are critical to decision-making and evaluation of hydrological models. Spatial variation in rainfall has been observed through anecdotal evidence and limited studies; however, there is little quantitative evidence that can be used to assess rainfall variation within a watershed on a daily, monthly, or yearly temporal scale. This study was conducted to quantify the spatial variation within a watershed in central Iowa and to determine if there were consistent differences among rain gages for the period from 1991 through 1998. The study was conducted within Walnut Creek watershed located south of Ames, Iowa on the Des Moines Lobe Landform region. The topography of this 5130 ha watershed is characterized by gently rolling fields with a narrow area of steeper land along the stream in the lower part of the watershed. Twenty-two tipping bucket rain gages were placed throughout the watershed and rainfall was recorded as 5 minute totals and then aggregated into daily totals. Accumulation of errors of the 5 minute values into the daily totals were considered to be random. There was a large coefficient of variation in the average daily totals; however, there was no consistent pattern of variation among rain gages, and coefficient of variation decreased with amount of rain. Each rain gage had an equal chance of receiving the lowest or highest rainfall total for any given storm event. When the daily average was computed over the year, there were no differences among rain gages. Monthly and yearly totals showed a decreased coefficient of variation compared to daily totals. There was no consistent pattern of spottiness within the watershed and if daily rainfall amounts are required for a decision, then direct measurements may be required. Received August 18, 1997 Revised March 1, 1999  相似文献   

20.
1991年我国夏季降水的时空变化特征   总被引:2,自引:0,他引:2  
陈桂英 《气象》1993,19(5):39-44
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号