首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
赵玮  郝翠  曹洁  周璇  卢俐 《大气科学》2022,46(5):1167-1176
利用北京地区20个国家站1980~2020年的长期逐时降水资料,分析了北京夏季降水的基本气候特征和日变化时空分布特征。结果表明:(1)北京地区夏季40年平均降水量分布具有西北山区小,平原大,山区向平原过渡区的迎风坡最大的特点;降水频率则相反,平原降水频率整体小于山区;降水强度整体表现为西北弱,东部强,城区与南部居中的特点。北京夏季降水的强度和极端性较强,致灾风险高。(2)北京夏季平均降水量日变化主体呈单峰型,降水频次为双峰型,降水强度为多峰型,三者同时在22时(北京时,下同)达到最大,在12时最小。(3)降水的峰值时间随月份依次后推,6月最早,7月次之,8月最晚;峰值雨量7月最大,8月次之,6月最小。(4)降水量、降水频率和降水强度的日峰值空间分布具有较强的一致性,西北山区四站出现在20时以前,其余16站出现在20时及以后。使用K均值聚类算法将20站划分为两个区域,结果显示两个区域的降水量、降水频率和强度的日变化具有完全不同的分布特点。(5)近40年北京地区的降水结构在不断调整,短持续时间降水主导期和长持续时间降水主导期交替出现。2000年以前以小于6小时的短持续性降水为主,近15年大于6小时的长持续性降水明显增多。  相似文献   

2.
使用2017~2022年5~9月逐小时三源融合实况格点降水(CMPAS)资料,采用K-均值聚类算法对东北暖季冷涡降水日变化分类,分析其特征及空间分布,结果显示:1)东北暖季冷涡降水多年平均降水量空间分布从西北到东南增加,降水频次的空间分布与其相似,降水强度大值区集中在辽东半岛附近。2)东北地区冷涡背景下降水量、降水频次和降水强度暖季平均日变化均呈双峰型,降水量的下午主峰值主要源于降水频次,而夜间次峰值与降水频次和降水强度均关系密切。3)聚类后冷涡降水量、降水频次的日变化表现为单峰型和双峰型特征,且单峰型格点占比较大,降水强度的日变化表现为单峰型。依据峰值出现时间及日变化形态间差异,降水量、频次与强度均可划分为4类不同的日变化类型。4)各类日变化空间占比统计结果显示,冷涡降水量、降水频次日变化存在下午峰值的格点均占比最大,夜间峰值次之,两者聚类后区域特征明显,与地形关系密切且分布相对规整;冷涡降水强度日变化下午单峰型格点占比最大,聚类后空间分布较为零散。  相似文献   

3.
基于聚类分区的中国夏季降水预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
文章基于近邻传播客观聚类方法对中国夏季降水进行了气候分区,以中国不同分区的夏季降水为预测对象,使用前期的海温和海平面气压场为预测因子,利用图像标签算法提取高相关封闭区域的预测因子信息。结合最小二乘回归法建立预测模型。采用Ps评分、距平符号一致率和距平相关系数三种评分方法检验了该预测模型,比较了四种不同的因子配置方案的预测能力。研究结果表明,利用冬春季海温的演变特征结合海平面气压的年际变化为预测因子的分区预测模型效果较好,在1982—2009年期间的平均交叉检验平均Ps得分为81.4,距平符号一致率为63%,距平相关系数为0.35,2010—2014期间的独立样本预测检验的平均评分分别为77.1,58%和0.19,且逐年回报效果较为稳定,表明该方法对中国夏季降水有较好的预测效果。研究结果显示,该预测模型能较好地预测出2014年中国夏季降水南多北少的分布特征。  相似文献   

4.
辽宁省夏季降水的日变化特征   总被引:2,自引:0,他引:2  
杨森  周晓珊  高杰 《气象》2011,37(8):943-949
文章利用辽宁省25个气象观测站1961—2008年夏季6—8月的逐时降水自记资料,分析了辽宁省夏季降水日变化的基本特征。发现:降水日变化特征地域性较强,沿海站与内陆站存在差异。总体来说,沿海站降水量的最大值基本出现在午前04-08时,内陆站点则呈双峰值的形式,峰值分别出现在午前和午后,午后1 4—20时为降水量最大值出现的时间;降水频次的日变化特征和降水量基本相同;持续时间长的降水多在午前达到峰值,持续时间短的降水多在午后达到峰值;沿海站点午前的降水峰值区基本是由持续时间在6 h以上的长时间降水造成,内陆站点午后最大降水峰值则为持续时间6 h以内的短时降水,这与内陆下午对流能量强相适应。研究表明,降水日变化的存在能够影响到降水预报的评分。  相似文献   

5.
应用基于等价关系的模糊聚类分析方法,取λ=0.85为水平截集,将铜仁市1980-1990年11年的样本归为5类。对1991-1994年铜仁市夏季降雨量进行了试验检验,准确率达100%,1995年投入业务使用,效果较好。  相似文献   

6.
新疆夏季降水日变化特征   总被引:2,自引:2,他引:2       下载免费PDF全文
利用1991-2014年新疆16个国家基准气象站逐时降水资料,分析了新疆夏季不同区域降水日变化基本特征,揭示出新疆夏季降水日变化呈现显著的南、北疆区域差异,有别于我国中东部的一些新事实。结果显示:北疆降水量日变化呈现准单峰型特征,峰值主要发生在傍晚前后(16:00-20:00,地方时,下同);南疆降水量日变化呈现三峰特征,峰值分别出现在傍晚(17:00-18:00)、午夜后(00:00-01:00)和上午(10:00)。新疆夏季降水事件以6 h以内的短历时性质为主(平均为85%,比例明显高于我国中东部),而持续12 h以上的较长历时降水事件偶有发生;在天山东麓以外的新疆绝大部分地区,6 h以内短历时降水事件对总降水量的贡献率达54%,高于我国中东部地区。新疆西部和北疆北部降水量日变化主峰的贡献者是2~3 h短持续性降水为主的事件;而天山中-东部降水量日变化峰值则是来自于12 h内各不同持续时间降水事件的大致均等贡献。  相似文献   

7.
彭莉莉  邓剑波  谢傲 《暴雨灾害》2020,28(2):201-206

利用南岳山南坡不同海拔高度上的3个气象观测站2015年9月1日—2018年8月31日逐时降水资料,分析了南岳山降水日演变特征。结果表明:从山底到山顶总降水量逐渐增加,存在3个降水峰值时段,分别在清晨、午后和傍晚,清晨雨量峰值主要由该时段降水频次较高所致,午后与傍晚雨量峰值主要与该时段降水强度较大有关,山顶高山站与山底站降水量差异主要体现在午后与傍晚时段;小时最大降水量主要出现在午后至傍晚,山底站短时强降水出现时段较分散,山腰和山顶高山站短时强降水主要集中在午后至傍晚时段;持续时间小于等于6 h的短持续降水频次多于持续时间大于6 h长持续降水频次,其主要出现在午后至傍晚,长持续降水过程多出现在凌晨至中午,其对总降水量的贡献大于短持续降水。

  相似文献   

8.
湖南夏季降水日变化特征   总被引:10,自引:2,他引:10       下载免费PDF全文
戴泽军  宇如聪  陈昊明 《高原气象》2009,28(6):1463-1470
利用湖南96个测站13年的逐时自记降水资料, 分析了夏季(6~8月)降水日变化特征。结果表明, 湖南夏季降水日变化呈现显著的区域差异。湘东南降水量、 降水频次峰值主要出现在午后到傍晚, 而其它地区的降水峰值一般出现在清晨。进一步分析显示, 降水频次峰值出现时次分布更集中, 区域特征更鲜明。湘西北、 湘东南区域平均的累积降水量、 降水频次及降水强度的日变化在清晨和午后均呈双峰型特征。湘西北主(次)峰值出现的时间大致与湘东南次(主)峰值出现的时间对应。同时, 降水日变化与降水持续时间密切相关。持续5~10 h降水事件是持续1~4 h事件与持续10 h以上事件降水量峰值出现时间发生显著变化的过渡降水事件。持续1~4 h(10 h以上)的降水事件的极值降水始发时间为午后至傍晚(夜间)。在不同持续时间的降水事件中, 持续2 h降水的累积量最大。  相似文献   

9.
湖北省夏季降水日变化特征   总被引:1,自引:2,他引:1       下载免费PDF全文
利用2001—2014年湖北省77个气象观测站的整点逐时降水数据,通过划分不同区域和三种量级降水的方法,分析了夏季(6—8月)降水日变化特征。结果表明:1)湖北省夏季降水日变化特征非常明显,降水量曲线呈双峰结构,峰值出现在08时和17时(北京时间,下同),降水频次与降水强度均呈现\"一主一次\"的双峰结构,这主要与青藏高原东移来的天气系统自西向东的滞后性以及局地热力强迫有关,发生在傍晚(15—18时)的降水强度有明显的年际增强趋势。2)湖北省降水日变化特征区域差异显著,鄂西北与鄂西南降水峰值主要出现在傍晚和夜间,谷值出现在正午,鄂东三个区域的降水峰值出现在上午和傍晚,谷值出现在午夜。3)近14 a强度为0~20 mm/h的降水呈现减少趋势,主要发生在鄂西地区。其日变化曲线为\"一主一次\"的双峰结构,主(次)峰值出现在07(17)时。与之相反,短时强降水(≥20 mm/h)的发生概率东部大于西部,平原大于山区,有增加趋势的站点占总站点数的53.24%,峰(谷)值出现在17(12)时。短时特大强降水(≥50 mm/h)峰值出现在15—20时,03—14时出现概率较低。  相似文献   

10.
利用川渝地区1991~2012年夏季逐小时降水资料,分析该地区总降水、极端降水时空分布特征,特别是极端降水的日变化特征。结果表明,川渝地区受西高东低的地形影响,降水量总量(precipitation amounts,简称PA)也呈西少东多分布,具体是川西北高原少、川西南山地及东部盆地多,盆周山区多、盆中丘陵区少;降水频率(precipitation frequency,简称PF)则呈西高东低的相反分布,高原地区PF较高;降水强度(precipitation intensity,简称PI)的分布与PA较为一致,自西向东逐渐增强。极端降水的PA、PF、PI空间分布特征与总降水的空间分布特征相似。东部的四川盆地乐山、雅安地区和达州、广元地区,以及西南山地区的西昌、攀枝花地区的PA大主要是由于PI大。西昌地区北方小部分西南山地区的PA大主要是由于PF大。川西高原区PA小是因为PI小。PA日峰值自西向东递增,PF日峰值呈相反变化趋势,自西向东递减。两者几乎全部都出现在夜间,“夜雨”特征显著。海拔较高的地区日峰值大多出现在前半夜,而海拔较低的地区大多出现在后半夜,自西向东日峰值出现时间逐渐推迟,因...  相似文献   

11.
杨军勇  苏爱芳 《暴雨灾害》2021,71(2):153-159

利用2010—2018年河南省371个气象观测站(包含122个国家站和249个骨干区域站)逐时降水资料,对河南省暖季(5—9月)小时极端降水时空分布特征进行了统计分析。主要结果如下:(1)河南省暖季第99.9百分位小时极端降水阈值、强度、频次和贡献率的局地差异明显,其高值区主要分布在伏牛山南部、黄淮平原东部和淮河流域西南部。(2)河南小时极端降水事件主要发生7、8月,其中7月最多,且有1/4以上为区域性极端降水事件;全省小时极端降水频次日变化表现为明显的双峰型,主峰值出现在傍晚;80 mm·h-1以上小时极端降水频次日变化呈多峰结构,主峰值出现在夜间。(3)山地、丘陵、城市和平原四类下垫面区域的小时极端降水指标存在差异,城市小时极端降水强度最大,频次最低;山地小时极端降水强度最低,频次最高。(4)四类下垫面小时极端降水日变化虽均表现为双峰型,但也存在明显差异:山地其峰值以夜间为主,傍晚为辅;丘陵其峰值夜间、傍晚并存,且峰值强度接近;平原以及城市则以午后峰值为主,其中城市午后峰值强度更高。

  相似文献   

12.
  总被引:1,自引:0,他引:1  
The effects of sea surface temperature(SST) and its diurnal variation on diurnal variation of rainfall are examined in this study by analyzing a series of equilibrium cloud-resolving model experiments which are imposed with zero large-scale vertical velocity.The grid rainfall simulation data are categorized into eight rainfall types based on rainfall processes including water vapor convergence/divergence,local atmospheric drying/moistening,and hydrometeor loss/convergence or gain/divergence.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the increase in SST from 27°C to 29°C during the nighttime,whereas they are decreased during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased as the SST increases from 29°C to 31°C but the decreases are larger during the nighttime than during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased by the inclusion of diurnal variation of SST with diurnal difference of 1°C during the nighttime,but the decreases are significantly slowed down as the diurnal difference of SST increases from 1°C to 2°C.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the inclusion of diurnal variation of SST during the daytime.  相似文献   

13.
本研究基于新疆16个主要城市2015—2022年40个环境监测站逐时的6类空气污染物(PM2.5、PM10、SO2、NO2、CO、O3)数据,分析了大气污染物的时空分布特征,得出以下结论:(1)新疆大气污染物以颗粒物为主。(2)PM10浓度的空间分布由南往北逐步降低,浓度最高值出现在和田的春季,达六级污染(546 μg·m-3);PM2.5浓度在春季、夏季、秋季与PM10浓度分布特征一致,冬季中天山北坡城市浓度明显升高,全年最高值出现在五家渠市冬季,达五级污染(172 μg·m-3);四季PM10和PM2.5浓度最低值均在阿勒泰市,空气质量优。(3)乌鲁木齐市和喀什市颗粒物浓度整体呈下降趋势。阿勒泰市两类颗粒物浓度整体较低,空气质量均为优良等级。乌鲁木齐市PM10及PM2.5浓度在冬半年较高,两类颗粒物均在2017年1月达到最高值,达五级污染。喀什市PM10浓度在2—5月较高,PM2.5浓度在10月至次年5月较高,两类颗粒物均在2016年3月达到最高值,达六级污染。(4)两类颗粒物浓度日变化相似,阿勒泰市四季均在23:00时前后较高,乌鲁木齐市春、夏、秋三季在00:00—02:00较高,冬季在22:00时较高,喀什市春、夏、秋三季在夜间01:00时前后较高,冬季在13:00时较高。  相似文献   

14.
利用江苏近10 a(2005—2014年)暖季(5—9月)69站逐时降水资料,详细分析了短时强降水的空间分布、年际变化、季节内演变以及日变化特征。分析结果表明:短时强降水空间分布不均,整体上北部比南部活跃,最活跃区均位于沿淮西部,高强度短时强降水多发生在淮北东部,且空间分布集中。近10 a来江苏短时强降水整体呈减少趋势,主要表现为北部地区减少最为显著。短时强降水季节内分布不均匀,以7月最为活跃,高强度短时强降水在8月最为频繁;其逐候分布显示,梅期短时强降水骤增,于7月第2候达到峰值,盛夏期间高强度短时强降水增多,8月第3候达到峰值。江苏短时强降水的日变化整体呈双峰结构,主峰和次峰分别出现在傍晚17时(北京时间,下同)和清晨07时,高强度短时强降水多发于午后;短时强降水日变化存在季节内演变的阶段性特征和地域性差异,其中梅期和盛夏两个高发阶段均呈单峰结构,但梅期峰值出现在清晨,盛夏阶段峰值则出现在傍晚;由南向北,日变化特征由单峰向双峰、多峰演变,在淮河以南地区日峰值大多出现在午后至傍晚,而淮河以北地区多出现在夜间至清晨。  相似文献   

15.

利用1977年8月—2017年7月江西省83个国家自动气象站的逐时降水资料,分析了江西省小时降水的时空分布特征。结果表明:(1)年均降水小时数大值中心呈沿东、西部山脉的带状分布,江西北部鄱阳湖平原地区小时数相对较少,小时降水强度江西北部和东南部大;(2)小时降水事件平均历时由南向北逐渐增大;短历时(1~6 h)对总降水量的贡献率最高,贡献率空间分布由南向东北方向递减;历时超过6 h的降水事件,随着历时的增长大值中心向江西东北方向移动;(3)江西省小时强降水事件频次分布东高西低,且随着强降水等级的提升,高值中心逐渐北移;(4)小时降水主要出现在下午15—18时,多以短历时降水事件呈现,而中历时(8 h左右)的降水易出现在早晨07—08时;(5)近40 a赣北东部小时降水事件频次和累计降水量增加趋势显著。

  相似文献   

16.

对2008–2017年前汛期期间广东省沿海和内陆降水和闪电时空分布特征进行了对比分析,结果表明:在内陆(ITR),降水集中在中部和东部山区;日变化呈下午主峰、上午次峰的双峰分布;在季风爆发后,由于降水频率增加,午后峰值明显增大。在沿海区域(CTR),降水集中在山地周围。季风爆发前,CTR降水弱于ITR,这主要与CTR低层水汽外流有关,而季风爆发后,由于水汽流入增多,CTR降水明显增强。受降水频率和强度变化的影响,季风爆发后CTR的降水日变化由季风爆发前的双峰型向宽单峰型转变。与降水相比,闪电的时空分布在季风爆发前后阶段相对稳定,其最强中心位于ITR降水中心西侧平原,次中心位于CTR西部平原。闪电活动在季风爆发后显著增强,主要是由于闪电时数增多。ITR和CTR的闪电密度和闪电时数均呈现午后单峰型,且ITR峰值时刻比CTR晚约2 h。环流合成分析表明:清晨,低层大气偏中性层结,暖湿不稳定气流与地形分布有利于对流的形成。午后,太阳辐射增强,热力不稳定增大,导致对流频率和强度增强。季风爆发后,更加暖湿的条件有助于降水和闪电的增多。此外,闪电的发生与对流有效位能、低层垂直风切变和上升气流强度密切相关。

  相似文献   

17.
利用1994~2013年5~9月喀什市气象站逐小时降水资料,分析喀什近20a降水日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07时至19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3h)为主,多发生在傍晚至夜间,1h降水频次最多的是量级≤1mm的降水,但1.1mm≤R1≤3.0mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

18.
利用地面自动站逐小时降水观测数据,针对不同的地形特征(山区( 400 m)、山麓(100 ~ 400 m)和平原(0 ~ 100 m)),分析了2016–20年暖季(5~9月)长江中游地区总降水和短时强降水(小时降水量20 mm)的整体特征、空间分布差异及日变化演变特征。对于山区、山麓和平原,总降水和短时强降水的雨量均在6月或7月达到峰值,短时强降水对总降水的贡献率在8月达到峰值(雨量为23%;频次为1.74%)。山麓降水中总降水量高、且短时强降水雨量贡献高,山区降水中总降水频次高、但短时强降水雨量贡献低,平原降水的总降水频次和雨量均较低、但短时强降水的雨量贡献高。整体来看,总降水(雨量和频次)的大值区多分布在山脉附近的山区和山麓站,短时强降水(雨量和频次)则集中分布在山脉附近的山麓或平原站。在日变化方面,山区、山麓和平原的总降水和短时强降水均表现为强度有明显差异的双峰特征(弱清晨峰值和强午后峰值),且从5到8月具有从清晨降水逐渐向午后降水转变的特征。在午后峰值时刻,总降水和短时强降水的雨量均具有山麓高于山区和平原的特征,且山麓地区从夜间到午后的总降水强度增幅显著,表明午后的热力不稳定对山麓地区的降水增强有重要作用。  相似文献   

19.
张涛  李亮亮  李建 《暴雨灾害》2022,37(1):50-57

为更好地理解和认识小尺度地形对降水特性的影响,利用位于云贵高原地区相近的两个国家基准站太华山和昆明站2006—2018年雨季(5—10月)小时降水资料,统计分析了两站降水精细化的时空特征。结果表明,两站的海拔高度差约500 m、站距约5 km,暖季降水量差异不大,但降水的精细特征却存在明显差异,主要表现为:(1)两站的降水量和平均降水强度年际差异不明显,但太华山站多数年份的降水频次远多于昆明站;(2)降水日变化上,太华山站在11—20时的累积降水量要高于昆明站;两站降水频次均具有双峰型特征,但在03—09时和11—17时太华山站的降水频次要明显高于昆明站,00—13时和21—23时昆明站的平均降水强度高于太华山站。(3)两站的降水事件特征不同,太华山站的降水事件次数和累积降水量都明显多于昆明站,主要由持续时间在6 h以上的降水事件贡献。(4)两站降水事件主要为共有降水事件,降水特性差异也主要由共有降水事件造成。太华山站先开始(结束)降水的共有降水事件次数比昆明站多(少),持续时间(降水频次)比昆明站长(多),短、长时降水事件的降水量(降水频次)比昆明站大(多),平均降水持续时间比昆明站多0.36 h。(5)两站单独降水事件占总降水事件的39.9%,太华山站的单独降水事件数是昆明站的1.83倍,而且平均持续时间长于昆明站。

  相似文献   

20.
2010年汛期长江中游对流降水日变化特征分析   总被引:7,自引:2,他引:7  
赵玉春  徐明  王叶红  徐桂荣  崔春光 《气象》2012,38(10):1196-1206
利用2010年6月16日至7月31日每3h一次的探空资料、逐小时地面加密观测和卫星云图黑体辐射亮温(TBB)等资料,对长江中游的对流降水及大气物理量的日变化特征进行了分析。结果发现:对流降水具有明显的日变化特征,降水在15时(01时)左右具有峰(谷)值。地面气象要素和大气探空物理量也具有明显的日变化特征。地面温度的日变化特征最为明显,平均日变化幅度约9℃,露点温度的日变化幅度不到1℃,相对湿度的日变化主要由温度日变化造成。地面温度日变化的空间分布受到地形的影响,白天(夜间)高地形区升温(降温)幅度较平原地区大。地形差异造成的温度梯度日变化可驱动地形性热力流,白天山峰(平原)地区为地形性辐合(辐散)热力流,夜间恰好相反。白天低层大气稳定度降低和对流有效位能增大,有利于热对流的发展;夜间抬升凝结高度降低、相对湿度升高和大气可降水量增大有利于清晨长生命史对流系统的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号