首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

2.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

3.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

4.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

5.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

6.
We present new palaeomagnetic data for Cambrian and Ordovician volcanic and sedimentary rocks from the Kyrgyz North Tianshan (NTS) and review available data from the southwestern Central Asian Orogenic Belt (CAOB) to elucidate the tectonic history and evolution of this region during the early Palaeozoic. We observed a coherent evolution of the NTS and the Kazakhstan continent (or Kazakhstania) with a constant northwards movement between the Cambrian and Devonian at ~5 cm/a. After the northwards movement ceased in the Devonian, the accreted terrane assemblage of Kazakhstania occupied a stable latitudinal position at ~30°N until the final amalgamation of Eurasia occurred in the late Carboniferous to early Permian. Amalgamation of the Tarim and Turan blocks caused a counterclockwise bending within the southwestern segment of the CAOB, which occurred in an inconsistent way by a brittle-like response of the upper crust with a large variety of rotational movement. We suggest an evolution of the Kyrgyz CAOB terranes by steady migration away from Gondwana and subsequent capture in a zone of global downwelling at ~30°N, where accretion and subsequent amalgamation of Eurasia occurred with the CAOB terranes in its centre.  相似文献   

7.
The ages and paleogeographic affinities of basement rocks of Tibetan terranes are poorly known. New U-Pb zircon geochronologic data from orthogneisses of the Amdo basement better resolve Neoproterozoic and Cambro-Ordovician magmatism in central Tibet. The Amdo basement is exposed within the Bangong suture zone between the Lhasa and Qiangtang terranes and is composed of granitic orthogneisses with subordinate paragneisses and metasedimentary rocks. The intermediate-felsic orthogneisses show a bimodal distribution of Neoproterozoic (920-820 Ma) and Cambro-Ordovician (540-460 Ma) crystallization ages. These and other sparse basement ages from Tibetan terranes suggest the plateau is underlain by juvenile crust that is Neoproterozoic or younger; its young age and weaker rheology relative to cratonic blocks bounding the plateau margins likely facilitated the propagation of Indo-Asian deformation far into Asia. The Neoproterozoic ages post-date Rodinia assembly and magmatism of similar ages is documented in the Qaidaim-Kunlun terrane, South China block, the Aravalli-Delhi craton in NW India, the Eastern Ghats of India, and the Prince Charles mountains in Antarctica. The Amdo Neoproterozoic plutons cannot be unambiguously related to one of these regions, but we propose that the Yangtze block of the South China block is the most likely association, with the Amdo basement representing a terrane that possibly rifted from the active Yangtze margin in the middle Neoproterozoic. Cambro-Ordovician granitoids are ubiquitous throughout Gondwana as a product of active margin tectonics following Gondwana assembly and indicate that the Lhasa-Qiangtang terranes were involved in these tectono-magmatic events. U-Pb detrital zircon analysis of two quartzites from the Amdo basement suggest that the protoliths were Carboniferous-Permian continental margin strata widely deposited across the Lhasa and Qiangtang terranes. The detrital zircon age spectra of the upper Paleozoic Tibetan sandstones and other rocks deposited in East Gondwana during the late Neoproterozoic and Paleozoic are all quite similar, making it difficult to use the age spectra for paleogeographic determinations. There is a suggestion in the data that the Qiangtang terrane may have been located further west along Gondwana’s northern boundary than the Lhasa terrane, but more refined spatial and temporal data are needed to verify this configuration.  相似文献   

8.
中国西南特提斯构造演化—幔柱构造控制   总被引:26,自引:1,他引:26  
基于对中国西南特提斯巨型造山系的时空结构和构造-岩浆事件分析研究提出.泥盆-石炭纪时期出现于昌都-思茅陆块两侧的热幔柱导致了金沙江洋和澜沧江洋成对打开,热幔柱岩浆作用沿洋脊产出苦橄玄武岩和洋岛玄武岩,并造成区域地球化学异常。二叠纪末期出现于昌都-思茅-印支中央陆块下的冷幔柱导致了两大洋向该陆块下俯冲消减,陆块两缘发育沟-弧-盆体系,构成冷幔柱的洋壳板片在200Ma时期堆积沉落,诱发板块后继俯冲,产生滞后型孤火山-岩浆岩。发育于冈瓦纳大陆北缘的德干热幔柱在株罗纪导致怒江洋和雅鲁藏布江洋相继打开,在白垩纪末期(66Ma)形成德干玄武岩省。发育于劳亚大陆南缘的峨眉热幔柱在二叠纪,导致峨眉火成岩省的形成,在早中三叠世使甘孜-理塘断裂带扩张成洋。冷幔柱的持续发生,决定了雅鲁藏布江洋和甘孜-理塘向昌都-思茅陆块方向的俯冲消减,以及来自冈瓦纳大陆和劳亚大陆陆块分别向昌都-思茅陆块南北两侧拚贴和碰撞。  相似文献   

9.
ABSTRACT

To determine the Late Palaeozoic evolution of the Lhasa terrane, we report the results of field mapping, petrological and fossil investigations, and U–Pb dating of detrital zircon grains (n = 474) from lower-greenschist-facies clastic rocks of the Lagar Formation in the Baruo area, Tibet. Our results indicate that the Lagar Formation was deposited during the Late Carboniferous to Early Permian in a shallow-marine environment on the northern margin of Gondwana. Glacial marine diamictites are common within the Lagar Formation and record glaciation of Gondwana during the Late Palaeozoic. Moreover, the detrital materials of the Lagar formation originated mostly from the collision orogenic belt. The ages of detrital zircon grains from the Lagar Formation make up five main groups with ages of 410–540 Ma, 550–650 Ma, 800–1100 Ma, 1600–1800 Ma, and 2300–2500 Ma, which display three characteristic age peaks at ~1150, 2390 and 2648 Ma. We tentatively suggest that the Lhasa terrane was a shallow-marine basin under the influence of the Gondwanan glaciation during the Late Carboniferous–Early Permian.  相似文献   

10.
In the Gyirong and Nyalam areas, a massive amount of augen gneisses are extensively exposed in the middle Himalayan orogen. They consist of quartz, K-feldspar, plagioclase, biotite and minor muscovite. Zircons from augen gneisses have magmatic rims indicated by concentric oscillatory zoning. LA-ICP-MS zircon U-Pb dating gave weighted mean ages of (488.5±1.1) Ma (MSWD=0.6)、(475.1±0.7) Ma (MSWD=1.5) and (468.1±2.5) Ma (MSWD=4.2), hinting early Paleozoic magmatism in the Greater Himalayan Crystalline complex (GHC). The data in this study and other published geochronological results of Cambrian-Ordovician magmatites demonstrated that early Paleozoic orogenesis existed in the Himalayas. Early Paleozoic tectonic events preserved in Himalayas are well compared with the contemporaneous ones in the Lhasa terrane, Qiangtang terrane, Baoshan terrane and Tengchong terrane located in the south and southeast of Tibet Plateau. Integrating previous studies, we suggested an Andean-type orogeny corresponding to dynamic adjusting of the plates by subduction of the Proto-Tethys Ocean lithosphere along the northern margin of Gondwana, instead of Pan-African orogeny that was characterized by the continent-continent collisions during Gondwana assembly.  相似文献   

11.
在野外地质调查和岩相学观察的基础上,对保山地块东缘何珠次英安斑岩进行了LA-ICP-MS锆石原位U-Th-Pb同位素测定,得到16个测定点的206Pb/238U年龄加权平均值为216.8Ma±2.2Ma。该年龄值反映了岩体的侵位时间,表明其属于晚三叠世,而非前人认为的新生代。结合岩相学和前人地球化学研究资料分析认为,岩体具有I型和S型花岗岩的特征,反映了其在矿物和地球化学组成上的不平衡,应为幔源高温基性岩浆与壳源岩浆混合形成的,且前者占主导地位。这是昌宁-孟连结合带西侧首次报道幔源物质对晚三叠世岩浆活动的参与,表明保山地块在碰撞后地壳熔融过程中伴随地幔物质的上涌。研究表明,以何珠岩体为代表的次英安斑岩并非前人认为的新生代,保山地块南端前人划分的新生代岩体群的分布范围和规模可能需要重估。  相似文献   

12.
安多地区位于青藏高原腹地,为拉萨地体、羌塘地体及安多微陆块的结合部位,是研究拉萨地体、羌塘地体起源以及特提斯造山过程的关键位置。我们对采自安多地区的前中生代基底岩石及侏罗系沉积岩样品进行了岩石学、锆石U-Pb年代学及Hf同位素研究。研究结果表明:安多花岗片麻岩中锆石同时记录了510~505Ma岩浆年龄以及187Ma变质年龄;187Ma的变质锆石与510~505Ma的岩浆锆石具有相似的Hf同位素模式年龄(1.7~1.5Ga),表明寒武纪花岗岩主要来源于古老地壳重熔。碎屑锆石年代学分析结果揭示了安多微陆块石英岩具有498~484Ma、800~1000Ma和1800~1950Ma的年龄峰值,与南羌塘地体及特提斯喜马拉雅碎屑锆石年龄分布特征相似,表明其在早古生代时位于冈瓦纳大陆北部印度陆块边缘。南羌塘坳陷东南部中侏罗世砂岩及钙质砂岩碎屑锆石年代学分析结果显示其具有182~171Ma、450~600Ma、800~1000Ma、1800~1950Ma及2400~2600Ma的年龄峰值,这种年龄分布特征与安多微陆块及南羌塘地体相似,而与拉萨地体不同,说明南羌塘坳陷东南部下-中侏罗统物源主要来自安多微陆块及南羌塘地体,在早-中侏罗世时安多微陆块与南羌塘地体已经发生了碰撞造山。  相似文献   

13.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

14.
I.McDermid    J.C.Aitchison    Badengzhu    A.M.Davis    Liu Jianbing    Luo Hui    Wu Hiyun    S.V.Ziabrev  WT  ”BX 《地学前缘》2000,(Z1)
ZEDONG TERRANE, A MID CRETACEOUS INTRA-OCEANIC ARC, SOUTH TIBET  相似文献   

15.
Detachment of the sliver-like Cimmerian terrane from eastern Gondwana in the Early Permian triggered mafic volcanism in many parts of the rift zone. To understand this tectonic episode we have carried out paleomagnetic investigations on mafic volcanic for-mations that were erupted on key terranes that now form part of Tibet. Specifically, we will present data from sections near Lhasa City (central Lhasa block) and Tuotuohe (central Qiangtang Block) as well as near Gyanyima (Paleotethyan sea-mount) that was emplaced onto the floor of Palaeotethys during the Late Permian. Paleomagnetic plots from each location will be used for tectonic calculations. Our new data will be used to evaluate regional scale models con-cerned with how the Cimmerian terranes in southern and SE Asia (from Iran-Tibet-SW China-Myanmar- Thailand-Sumatra) formerly abutted eastern Gond-wana.  相似文献   

16.
Tectonics of Northeast Asia: An overview   总被引:1,自引:0,他引:1  
The tectonic units of the Verkhoyansk-Chukotka Mesozoides and the Koryak-Kamchatka Fold Region substantially differ from each other in the structure and composition of terranes. The geodynamic settings of terrane formation are defined and the main stages of their tectonic history are reconstructed. The formation of Mesozoides was mainly controlled by collision, largely between the continent and the Kolyma-Omolon and Chukchi microcontinents. The accretionary structure of the Koryak Highland comprises various terranes transported by Pacific plates and docked to the Asian continent, periodically accreting its margin. The following evolutionary stages are established: destruction of the North Asian continent (Ordovician, Late Devonian-Early Carboniferous, Permian-Triassic); amalgamation (Middle Jurassic for Kolyma and Mid-Cretaceous for Koryak terranes); collision (terminal Early Cretaceous); and continental growth (terminal Early Cretaceous, terminal Late Cretaceous, middle Eocene).  相似文献   

17.
西南三江造山带地层区划   总被引:6,自引:5,他引:1  
西南三江为一复杂造山带,由特提斯大洋板块的怒江-孟连主大洋及欧亚大陆板块的扬子陆块大陆边缘弧盆系、冈瓦纳大陆板块北缘弧盆系构成。随着特提斯大洋怒江-孟连洋俯冲、消亡,后板块发生碰撞、走滑及岩浆岩侵位等,形成了现今由板块缝合带、增生杂岩带构成的西南三江造山带,造就了复杂的地层系统,包含史密斯地层、有限史密斯地层,非史密斯地层。本文突破"传统地层学"概念,按"构造地层学"的现代地层学概念建立了西南三江地层格架,划分出欧亚大陆板块的北羌塘-三江地层大区、特提斯大洋板块的班公湖-怒江-孟连构造-地层大区、冈瓦纳大陆板块的冈底斯-腾冲地层区。  相似文献   

18.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

19.
The Charysh–Terekta–Ulagan–Sayan suture zone was regarded as a tectonic boundary separating two distinct subduction–accretion systems in the Central Asian Orogenic Belt (CAOB). In the north, magmatic arcs, such as the Gorny Altai terrane, formed in the southwestern periphery of the Siberian continent, whereas in the south, arc-prism systems, such as the Altai–Mongolian terrane, formed around the so-called Kazakhstan–Baikal composite continent with Gondwana affinity. When did these two systems amalgamate and whether the metamorphic complexes in the suture zone represent Precambrian micro-continental slivers are critical for our understanding of the accretionary orogenesis and crustal growth rate in the CAOB. A combined geochemical and detrital zircon U–Pb–Hf isotopic study was conducted on the meta-sedimentary rocks from the Ulagan (also referred to Bashkaus) and Teletsk Complexes in the suture zone. The results indicate that the protoliths of these rocks were dominated by immature sediments deposited in a time period between 500 and 420 Ma. Thus, Precambrian micro-continental slivers may not exist in the suture zone and even in the whole Altai Orogen.The meta-sedimentary rocks from the Ulagan Complex yield geochemical compositions between those of common intermediate and felsic igneous rocks, implying that these kinds of rocks possibly served as dominant sources. Detrital zircons from this complex consist of a major population of ca. 620–500 Ma, a subordinate one of ca. 931–671 Ma and rare grains of ca. 2899–1428 Ma. This age spectrum is compatible with the magmatic records of the western Mongolia. We propose that the Ulagan Complex possibly represents part of a subduction–accretion complex built upon an active continental margin of the western Mongolia in the early Paleozoic. The remarkable similarities in source nature, provenance, and depositional setting to the early Paleozoic meta-sedimentary rocks from the northern Altai–Mongolian terrane imply that the Ulagan Complex was possibly fragmented from this terrane.The meta-sedimentary rocks from the Teletsk Complex show similar detrital zircon populations but contain higher proportions of mafic sediments and have more depleted whole-rock Nd isotopic compositions. Our data suggest that the detritus mostly came from the same source as that for the Ulagan Complex but those from the Gorny Altai terrane also contributed. This implies that the Gorny Altai and Altai-Mongolian terranes possibly amalgamated prior to the early Devonian rather than in the middle Devonian to early Carboniferous as previously thought. Thus, the widespread Devonian to early Carboniferous magmatism within these two terranes was possibly generated in a similar tectonic setting. Moreover, the dominant Neoproterozoic to early Paleozoic detrital zircons from the Teletsk Complex yield largely varied ɛHf(t) values of − 23.8 to 12.4, indicating that crustal growth and reworking are both important in the accretionary orogenesis.  相似文献   

20.
中亚大陆古生代构造形成及演化   总被引:8,自引:3,他引:8  
西伯利亚、塔里木及哈萨克斯坦诸古板块中的微陆和地体构造了中亚十分复杂的拼贴构造图案。古生代时,南天巴准洋-阿萨伊锡弧沟弧系和额尔齐斯洋-成田弧沟弧系构成了哈萨克斯坦板块的原型,塔里木板块陆壳块体在泥盆纪相对于阿萨伊锡岛弧的左行低角度斜俯冲和碰撞,造成此弧的解体、走滑堆叠和山弯构造。与此同时,成田岛弧南北两侧分别受到南天巴准洋和额尔齐斯洋的俯冲。在晚古生代晚期这两个沟弧系演变为哈萨克斯坦板块的基本构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号