首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtextural study of a single troilite‐metal nodule (TMN) from the Katol L6‐7 chondrite, a recent fall (May, 2012) in India suggests that the TMN is primarily an aggregate of submicron‐scale intergrowth of troilite and kamacite (mean Ni: 6.18 wt%) juxtaposed with intensely fractured silicates, mainly olivine (Fa: 25 mole%), low‐Ca pyroxene (Fs: 21.2 mole%), and a large volume of maskelynite. Evidence of shock textures in the TMN indicates a high degree of shock metamorphism that involves plagioclase‐maskelynite and olivine‐wadsleyite/ringwoodite transformations and formation of quenched metal‐sulfide melt textures due to localized shear‐induced frictional melting. It is inferred that the TMN formation is an independent, localized event by a high energy impact and its subsequent incorporation in the ejected chondritic fragment of the parent body. Katol chondrite has been calibrated with a peak shock pressure of S5 (~45 GPa) after Stöffler et al. (1991), whereas peak shock pressure within the TMN exceeds the shock facies S6 (>45 GPa) following Bennett and McSween (1996) and Stöffler et al. (1991). Overall, the shock‐thermal history of the Katol TMN is dissimilar as compared to the host chondrite.  相似文献   

2.
Abstract– We present a detailed study of mineralogy, chemistry, and noble gases of the Neuschwanstein (EL6) chondrite that fell in 2002 in southern Germany. The meteorite has an unbrecciated texture and exhibits only minor shock features. Secondary weathering products are marginal. Neuschwanstein is an EL6 chondrite with heterogeneously distributed metal and sulfide grains. In terms of bulk chemistry, it has very high Fe concentrations, and siderophile and halogen element abundances higher than typical EL chondrites. However, like other ELs of higher petrologic type, it has low moderately volatile element abundances, e.g., Mn and Zn. We interpret these as indicators for loss of sulfide, probably through mobilization of ferroan alabandite and a Zn‐bearing sulfide, potentially sphalerite, during metamorphism. Trapped noble gases are dominated by a subsolar component with high Ar concentrations and are typical for EL chondrites. The shielding parameters indicate a small meteoroid (<20 cm radius) with an exposure age of approximately 47 Ma, which is among the highest for enstatite chondrites.  相似文献   

3.
Abstract— The Machinga, southern Malawi, Africa, L6 chondrite (observed fall, 22 January 1981) contains accessory phases of metal, troilite, chromite, and native Cu (which is associated with limonite and found in zones of aqueous alteration). Rare accessory phases are apatite and pentlandite, which are uncommon in L6 chondrites. Major mineral constituents (olivine, orthopyroxene, and plagioclase) indicate shock effects at a level of about 15–20 GPa shock pressure. The meteorite is thus classified to be of L6d type. Melt pockets of widely variable composition are abundant.  相似文献   

4.
Abstract— Two dark lithic fragments and matrix of the Krymka LL3.1 chondrite were mineralogically and chemically studied in detail. These objects are characterised by the following chemical and mineralogical characteristics, which distinguish them from the host chondrite Krymka: (1) bulk chemical analyses revealed low totals (systematically lower than 94 wt%) due to high porosity; (2) enrichment in FeO and depletion in S, MgO and SiO2 due to a high abundance of Fe‐rich silicates and low sulfide abundance; (3) fine‐grained, almost chondrule‐free texture with predominance of a porous, cryptocrystalline groundmass and fine grains; (4) occurrence of a small amount of once‐molten material (microchondrules) enclosed in fine‐grained materials; (5) occurrence of accretionary features, especially unique accretionary spherules; (6) high abundance of small calcium‐ aluminium‐rich inclusions (CAIs) in one of the fine‐grained fragments. It is suggested that the abundance of CAIs in this fragment is one of the highest ever found in an ordinary chondrite. Accretionary, fine‐grained spherules within one of the fragments bear fundamental information about the initial stages of accretion as well as on the evolution of the clast, its incorporation, and history within the bulk rock of Krymka. The differences in porosity, bulk composition, and mineralogy of cores and rims of the fine‐grained spherulitic objects allow us to speculate on the following processes: (1) Low velocity accretion of tiny silicate grains onto the surface of coarse metal or silicate grains in a dusty region of the nebula is the beginning of the formation of accretionary, porous (fluffy) silicate spherules. (2) Within a dusty environment with decreasing silicate/(metal + sulfide) ratio the porous spherules collected abundant metal and sulfide particles together with silicate dust, which formed an accretionary rim. Variations of the silicate/(sulfide + metal) ratio in the dusty nebular environment result in the formation of multi‐layered rims on the surface of the silicate‐rich spherules. (3) Soft accretion and lithification of rimmed, fluffy spherules, fine‐grained, silicate‐rich dust, metal‐sulfide particles, CAIs, silicate‐rich microchondrules, and coarse silicate grains and fragments followed. (4) After low‐temperature processing of the primary, accretionary rock collisional fragmentation occurred, the fragments were subsequently coated by fine‐grained material, which was highly oxidized and depleted in sulfides. (5) In a final stage this accretionary “dusty” rock was incorporated as a fragment within the Krymka host.  相似文献   

5.
The trajectory and orbit of the LL7 ordinary chondrite Dishchii'bikoh are derived from low‐light video observations of a fireball first detected at 10:56:26 UTC on June 2, 2016. Results show a relatively steep ~21° inclined orbit and a short 1.13 AU semimajor axis. Following entry in Earth's atmosphere, the meteor luminosity oscillated corresponding to a meteoroid spin rate of 2.28 ± 0.02 rotations per second. A large fragment broke off at 44 km altitude. Further down, mass was lost to dust during flares at altitudes of 34, 29, and 25 km. Surviving meteorites were detected by Doppler weather radar and several small 0.9–29 g meteorites were recovered under the radar reflection footprint. Based on cosmogenic radionuclides and ground‐based radiometric observations, the Dishchii'bikoh meteoroid was 80 ± 20 cm in diameter assuming the density was 3.5 g/cm3. The meteoroid's collisional history confirms that the unusual petrologic class of LL7 does not require a different parent body than three previously observed LL chondrite falls. Dishchii'bikoh was ejected 11 Ma ago from parent body material that has a 4471 ± 6 Ma U‐Pb age, the same as that of Chelyabinsk (4452 ± 21 Ma). The distribution of the four known pre‐impact LL chondrite orbits is best matched by dynamical modeling if the source of LL chondrites is in the inner asteroid belt in a low inclined orbit, with the highly inclined Dishchii'bikoh being the result of interactions with Earth before impacting.  相似文献   

6.
Abstract— This study presents compositional data and 57Fe Mössbauer spectra, taken at 295 K and 85 K, of two fragments of the enstatite (EL6) chondrite Neuschwanstein that fell near the famous Neuschwanstein castle (Bavaria, southern Germany) on April 6, 2002. Main silicate minerals are enstatite (Fs 2) and plagioclase (An 20), the main opaque minerals are kamacite and troilite. Small amounts of oldhamite, daubreelite, and schreibersite have been found. The presented Mössbauer data are the first data gathered for an EL6 chondrite. The dominant parts of each Mössbauer spectrum consist of two six‐line patterns due to the presence of ferromagnetic phases kamacite and troilite. In contrast to other chondrites, peaks of other iron species in the central parts of the spectra are missing due to an extremely low content of Fe‐bearing paramagnetic components. The hyperfine interaction parameters for kamacite are internal magnetic hyperfine field Hhf = 333.2 kOe, isomer shift (relative to a metallic Fe foil) IS = 0.01 mm/s, quadrupole splitting QS = 0 mm/s, line width W = 0.41 mm/s. The data for troilite are Hhf = 305.5 kOe, IS = 0.75 mm/s, QS = ?0.85 mm/s, W = 0.34 mm/s.  相似文献   

7.
Abstract— We report the mineralogy and oxygen isotopic compositions of FeO‐rich silicates in the Sahara 97159 EH3 chondrite. This component is referred to as FeO‐rich because it contains substantially more FeO than the characteristic FeO‐poor silicates in the highly reduced enstatite meteorites. These FeO‐rich silicates are mostly low‐Ca pyroxene (Fs5–35) and their compositions suggest an origin under more oxidizing conditions, like those for the ordinary chondrites. However, the mafic silicates in ordinary and carbonaceous chondrites are dominantly olivine, and the FeO‐rich silicates in the E chondrites are less commonly olivine. The oxygen isotopic compositions of the FeO‐rich silicates are indistinguishable from those of FeO‐poor silicates in Sahara 97159. These observations suggest that both the FeO‐rich silicates and the FeO‐poor silicates in EH chondrites formed from the same oxygen reservoir where redox conditions varied widely.  相似文献   

8.
Abstract— The Leedey, Oklahoma, meteorite shower fell on 1943 November 25, following a fireball which was visible across much of southwestern Oklahoma and northcentral Texas. The shower produced 24 stones with a total mass of ~51.5 kg. The stones formed a strewnfield ~18 km in length in the same direction as the observed path of the meteor (N50°W). Leedey is classified as an L6(S3) ordinary chondrite. We report bulk major element chemical analyses from four separate laboratories. Leedey contains an unusual 6 by 8 mm composite Fe,Ni-FeS grain, which is composed of a 3 mm kamacite grain adjacent to a 5 mm troilite grain. A 50–100 μm rim of high-Ni (45–55 wt%) taenite (tetrataenite) occurs at the boundary between kamacite and troilite. A single, zoned pyrophanite grain is observed at the boundary between the inclusion troilite and host silicates. An origin as a foreign particle incorporated after metamorphism or during impact melting appears unlikely. This particle likely formed by a complex set of processes, including melting in the nebula, parent body metamorphism and reheating by later shock, mirroring the history of the host chondrite.  相似文献   

9.
Abstract The majority of the carbonaceous chondrite clasts found in howardites, eucrites and diogenites are CM2 material, a lesser proportion is CR2 material, and other rare types are present. A single clast that was found on the Moon and called the Bench Crater meteorite is apparently shocked CM1 material. The CM2 clasts are matrix supported mixtures of olivine-pyroxene-phyllosilicate-sulfide bearing aggregates, loose olivines and pyroxenes, sulfides, carbonates, and sinuous spinel-phyllosilicate-diopside calcium-aluminum-rich inclusions (CAIs). Magnetite and metal are rare. Some aggregates have fine-grained rims of material resembling matrix. The opaque, fine-grained matrix consists predominantly of serpentine of extremely variable composition and sulfides; tochilinite is occasionally present. The trace element data for one Jodzie clast from this study and the average of similar clasts from Kapoeta support a CM classification; volatiles are depleted relative to CI and enriched relative to CR material. The CR2 clasts are found (in small numbers) in only four howardites: Bholghati, Jodzie, Kapoeta and Y793497. Petrographically, they are matrix-supported mixtures of olivine aggregates (sometimes containing sulfides), loose olivines, pyrrhotite, pentlandite, low-Ca pyroxene (minor), hedenbergite (rare), kamacite (rare and only found within olivine), Ca-carbonates and abundant magnetite framboids and plaquets. Phyllosilicates are fine-grained and largely confined to matrix; they are mixtures of serpentine and saponite. The matrix of CR2 clasts also contains pyrrhotite, pentlandite, chromite and a significant fraction of poorly-crystalline material with the same bulk composition as matrix phyllosilicate. There is evidence of heating in a substantial number of clasts, both CM2 and CR2, including: (1) corrugated serpentine flakes, (2) pseudomorphs of anhydrous ferromagnesian material after flaky phyllosilicates, and (3) hedenbergite rims on calcite. While the timing of the hedenbergite rims is debatable, the destruction of phyllosilicates clearly occurred at a late stage, plausibly during impact onto the HED asteroid(s) and Moon, and required peak heating temperatures on the order of 400 °C. We note that in general, CM2 material was the most common carbonaceous chondrite lithology impacting the HED asteroids (with howardites and eucrites taken together), as it is for the Earth today. A total of 61 out of 75 carbonaceous chondrite clasts from HED meteorites belong to the CM clan, petrologic grade 2. This is also supported by published siderophile and volatile element data on howardites, eucrites and diogenites that are taken to indicate that CM-like materials were the most common impactors on the HED asteroid(s). The ratio of CR/CM clasts in HED asteroids is essentially the same as for modern falls at Earth. This may indicate that the ratio of disaggregated CM2 to CR2 asteroidal material has been approximately constant through the history of the solar system. Finally, our results are also compatible with type-2 carbonaceous chondrites being equivalent to or from the same source as the material that originally accreted to form the HED asteroid.  相似文献   

10.
Abstract— A spherical, 220-μm diameter, spinel-hibonite-perovskite inclusion from the Allende C3V meteorite contains a central hibonite cluster with an angular boundary. This central hibonite is enclosed within spinel that is zoned from Mg-rich at the hibonite boundary to more Fe-rich at the inclusion boundary. This spinel zone includes lath-shaped hibonites usually oriented subradial to the central hibonites. Two textural types of perovskites are present as exsolution from the central hibonite and as equidimensional grains within both the central hibonite and spinel. These second perovskites have exsolution lamellae of Al2O3. Within the central hibonite and adjacent to some equidimensional perovskites, a fine porous phase interpreted as alteration has a composition of nearly pure Al2O3 with minor amounts of Na and Si. This is possibly either an intergrowth of corundum and nepheline or a modified Al2O3, β-alumina. The central hibonites and equidimensional perovskites are considered relict grains on which the spinel-hibonite layer crystallized. The relict material had undergone slow cooling in a previous event to produce exsolution of original high-temperature compositions. Later alteration caused breakdown of hibonite to give an Al2O3-rich phase. This inclusion represents a composite body which formed in a Ca-Al-rich environment.  相似文献   

11.
The disruption of the L chondrite parent body (LCPB) at ~470 Ma is currently the best-documented catastrophic celestial impact event, based on the large number of L chondritic materials associated with this event. Uranium-lead (U-Pb) dating of apatite and its high-pressure decomposition product, tuite, in the Sixiangkou L6 chondrite provides a temporal link to this event. The U-Pb system of phosphates adjacent to shock melt veins was altered to varying degrees and the discordance of the U-Pb system correlates closely with the extent of apatite decomposition. This suggests that the U-Pb system of apatite could be substantially disturbed by high-temperature pulse during shock compression from natural impacts, at least on the scale of mineral grains. Although many L chondrites can be temporally related to the catastrophic LCPB impact event, the shock conditions experienced by each individual meteorite vary. This could be due to the different geologic settings of these meteorites on their parent body. The shock pressure and duration derived from most meteorites may only reflect local shock features rather than the impact conditions, although they could provide lower limits to the impact conditions. The Sixiangkou shock duration (~4 s), estimated from high-pressure transformation kinetics, provides a lower limit to the high-pressure pulse of the LCPB disruption impact. Combined with available literature data of L chondrites associated with this impact event, our results suggest that the LCPB suffered a catastrophic collision with a large projectile (with a diameter of at least 18–22 km) at a low impact velocity (5–6 km s−1). This is consistent with astronomical estimates based on the dynamical evolution of L chondritic asteroids.  相似文献   

12.
Abstract— We measured cosmogenic radionuclides (10Be, 26Al, and 36Cl) and noble gases (He, Ne, and Ar) in 10 specimens of the Mocs L6 chondrite to determine the exposure history and preatmospheric relationship among fragments from known locations in the strewn field. Cosmogenic noble gas contents alone are consistent with a simple irradiation exposure of 15.2 Ma. However, Mocs has very low 22Ne/21Ne ratios indicative of deep burial in a large meteoroid, but radionuclide levels at saturation values typical for much smaller meteoroids: this paradox suggests a possible complex exposure. For the latter case, we propose a two‐stage exposure history in which Mocs initially was deeply buried in a large object for 110 Ma, followed by exposure in a 65 cm object for 10.5 Ma. Relative shielding was inferred from the measured 22Ne/21Ne ratios assuming constant 22Ne/21Ne production for all samples during the first stage. These shielding levels, which are supported by estimates based on 36Cl production by neutron capture, indicate a possible relationship between depth of samples in the Mocs meteoroid and fall location in the strewn field.  相似文献   

13.
Abstract— Twenty ~100-mg random fragments of the Bruderheim chondrite were analyzed by INAA to determine extents of heterogeneity and to check earlier results that gave anomalous LREE concentrations. Considerable compositional heterogeneity was observed in both concentrations (maximum/minimum of 1.7 for Ir, 1.8 for Na, 6.8 for La, 7.4 for Co) and concentration ratios (>3 × for Ni/Co and La/Eu). Compositions could be modelled quantitatively in terms of end-member components of constant composition representing the minerals olivine + orthopyroxene, clinopyroxene, plagioclase, kamacite, taenite, troilite, chromite, and phosphate. The model yields the proportions of minerals in each sample as well as the meteorite as a whole; accurate determination of the end members depends on high intrasample precision for many elements. No evidence of compositional heterogeneity of end members for trace elements was found. It is shown that these analyses, which used only ~2 grams of the meteorite, are equivalent in accuracy to a single sample of several tens of grams, and that knowledge of the extent of heterogeneity is essential to knowing the quality of sampling as well as for comparing results from one analysis with another and of one meteorite with another.  相似文献   

14.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

15.
Abstract— The petrographic and chemical characteristics of a fresh Indian meteorite fall at Sabrum are described. Its mean mineral composition is defined by olivine (Fa31.4), orthopyroxene (Fs25.1,Wo2.0), clinopyroxene (Wo45En45.6Fs9.4) and plagioclase (An10.6Ab83.6Or5.8). The meteorite shows moderate shock features, which indicate that it belongs to the S4 category. Based on mineralogical and chemical criteria the meteorite is classified as an LL6 brecciated veined chondrite. Several cosmogenic radioisotopes (46Sc, 7Be, 54Mn, 22Na and 26Al), noble gas (He, Ne, Ar, Kr and Xe), nitrogen isotopes, and particle tracks density have been measured. Concentrations of cosmogenic 21Ne and 38Ar indicate that its cosmic‐ray exposure age is 24.8 Ma. Small amounts of trapped Kr and Xe, consistent with petrologic class 5/6, are present. The track density in olivines is found to be (1.3 ± 0.3) × 106/cm2. Activities of most of the short‐lived isotopes are lower than those expected from solar cycle variation. 22Na/26Al (1.12 ± 0.02) is found to be significantly anomalous, being ?25% lower than expected from the Climax neutron monitor data. These results indicate that the cosmic‐ray flux during the terminal segment of the meteoroid orbit was low. The activities of 26Al and 60Co and the track density indicate small meteoroid size with a radius ?15 cm.  相似文献   

16.
Abstract— We used synchrotron X‐ray microtomography to image in 3‐dimensions (3D) eight whole chondrules in a ?1 cm3piece of the Renazzo (CR) chondrite at ?17 μm per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole‐chondrule Mg/Si ratios with a supra‐chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.  相似文献   

17.
Abstract– The morphology and petrology of distinct melt veins in the Suizhou L6 chondrite have been investigated using scanning electron microscopy, electron microprobe analyses, and Raman spectroscopy, synchrotron energy‐dispersive diffraction, and transmission electron microscopy. It is found that the melt veins in the Suizhou meteorite morphologically are the simplest, straightest, and thinnest among all shock veins known from meteorites. At first glance, these veins look like fine fractures, but petrologically they are solid melt veins of chondritic composition and consist of fully crystalline materials of two distinct lithological assemblages, with no glassy material remaining. The Suizhou melt veins contain the most abundant high‐pressure mineral species when compared with all other veins known in chondrites. Thus, these veins in Suizhou are classified as shock veins. All rock‐forming and almost all accessory minerals in the Suizhou shock veins have been transformed to their high‐pressure polymorphs, and no fragments of the precursor minerals remain in the veins. Among the 11 high‐pressure mineral phases identified in the Suizhou veins, three are new high‐pressure minerals, namely, tuite after whitlockite, xieite, and the CF phase after chromite. On the basis of transformation of plagioclase into maskelynite, it is estimated that the Suizhou meteorite experienced shock pressures and shock temperatures up to 22 GPa and 1000 °C, respectively. Shearing and friction along shock veins raised the temperature up to 1900–2000 °C and the pressure up to 24 GPa within the veins. Hence, phase transition and crystallization of high‐pressure minerals took place only in the Suizhou shock veins. Fast cooling of the extremely thin shock veins is regarded as the main reason that up to 11 shock‐induced high‐pressure mineral phases could be preserved in these veins.  相似文献   

18.
Abstract— Metal nodules are one of the major textural components of Kaidun sample #01.3.06 EH3-4. In terms of structure, the nodules are of three types: (1) globular, (2) zoned with a massive core and globular mantle, and (3) nodules with no internal structure. The size and composition of the globules in the nodules and grains of metal of the matrix are almost identical: no greater than 20 μm and Ni, 5.95; Si, 3.33 wt%. The nodules contain small (usually <5 μm) inclusions of SiO2; albitic glass; enstatite; roedderite; and a mixture of SiO2 and Na2S2. This is the first reported occurrence of a simple sulfide of an alkaline metal in nature. The formation of the inclusions appears to be related to condensation of material onto the surfaces of metal grains. The nodules appear to have formed by aggregation of separate grains (globules) of metal, with conservation of condensates on the grain surfaces as inclusions. The inclusions probably condensed over a significant temperature range from 1400 to 600 K. The aggregation of metal grains and formation of the nodules probably occurred simultaneously with condensation.  相似文献   

19.
Abstract— The Carcote meteorite, detected in 1888 in the northern Chilean Andes, is a brecciated, weakly shocked H5 chondrite. It contains a few barred olivine chondrules and, even more rarely, fan-shaped or granular orthopyroxene chondrules. The chondrules are situated in a fine-grained matrix that consists predominantly of olivine and orthopyroxene with accessory clinopyroxene, troilite, chromite, merrillite, and plagioclase. The metal phase is mainly kamacite with subordinate taenite and traces of native Cu. In its bulk rock composition, Carcote compares well with other H5 chondrites so far analysed, except for a distinctly higher C content. Microprobe analyses revealed the following mineral compositions: olivine (Fa16.5–20), orthopyroxene (Fs14–17.5), diopsidic clinopyroxene (FS6–7), plagioclase (An15–20). Troilite is stoichimetric FeS with traces of Ni and Cr; chromite has Cr/(Cr + Al) of 0.86, Fe2+/(Fe2+ + Mg) of 0.80-0.88 and contains considerable amounts of Ti, Mn, and Zn. Merrillite is close to the theoretical formula Ca18(Mg, Fe)2Na2(PO4)14, although with a Na deficiency not compensated for by excess Ca; the Mg/(Mg + Fe2+) ratio of the Carcote merrilite is 0.93-0.95. Kamacite and taenite have Ni contents of 5.6–7.2 and 17.1–23.4 wt%, respectively. Native Cu contains about 3.1–3.3 wt% Fe and 1.6 wt% Ni. Application of different geothermometers to the Carcote H5 chondrite yielded apparently inconsistent results. The highest temperature range of 850–950 °C (at 1 bar) is derived from the Ca-in-opx thermometer. From the cpx-opx solvus geothermometers and the two-pyroxene Fe-Mg exchange geothermometer, a lower temperature range of 750–840 °C is estimated, whereas lower and more variable temperatures of 630–770 °C are obtained from the Ca-in-olivine geothermometer. Recent calibrations of the olivine-spinel geothermometer yielded a still lower temperature range of 570–670 °C, which fits well to the temperature information derived from the Ni distribution between kamacite and taenite. Judging from crystal chemical considerations, we assume that these different temperatures reflect the closure of different exchange equilibria during cooling of the meteorite parent body.  相似文献   

20.
Abstract— Dendrites in the metal-troilite spherules in both shock-induced melt veins and a melt pocket of the Yanzhuang chondrite show zoning in their microstructures. This feature is indicative of nonequilibrium solidification of the metal phases. Dendrites in the melt pocket have a typical crust-core structure consisting of martensitic interiors (7.5–8.1 wt% Ni) and Ni-rich rims (12.5–23.3 wt% Ni). In comparison, the dendrites in melt veins have three microstructural areas: (1) core (6.4–7.3 wt% Ni); (2) martensite between the core and rim (7.4–8.5 wt.% Ni); (3) Ni-rich rim (12.8–21.4 wt% Ni). It is suggested that the difference in cooling rates following shock-induced high temperature melting might be an important factor in producing the different dendritic microstructures in melt veins and melt pocket. Cooling rates deduced from measurements of secondary dendritic arm spacings are 100–400 °C/s in the melt veins and 6–30 °C/s in the melt pocket, respectively, and lie in the temperature interval 950 to 1400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号