首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To protect a water for the purpose of local recreation – inclusive of bathing – the effluent of an upstream clarification plant was chlorinated. Due to poorly controlled dosing, residual chlorine quantities exceeding the permissible level entered the receiving stream, its biocenosis having been considerably endangered. Detrimental effects on the chemical composition are graphically represented by the measured results for some waters – partly criteria of quality. There is explained that the self-purification capacity of the water decreased by about 30 % and that the hydrobiological species composition of periphyton was reduced by about 80 %. Finally, advice is given concerning the prevention of such damages to waters.  相似文献   

3.
Li G 《Ground water》2011,49(4):584-592
Often the water flowing in a karst conduit is a combination of contaminated water entering at a sinkhole and cleaner water released from the limestone matrix. Transport processes in the conduit are controlled by advection, mixing (dilution and dispersion), and retention-release. In this article, a karst transport model considering advection, spatially varying dispersion, and dilution (from matrix seepage) is developed. Two approximate Green's functions are obtained using transformation of variables, respectively, for the initial-value problem and for the boundary-value problem. A numerical example illustrates that mixing associated with strong spatially varying conduit dispersion can cause strong skewness and long tailing in spring breakthrough curves. Comparison of the predicted breakthrough curve against that measured from a dye-tracing experiment between Ames Sink and Indian Spring, Northwest Florida, shows that the conduit dispersivity can be as large as 400 m. Such a large number is believed to imply strong solute interaction between the conduit and the matrix and/or multiple flow paths in a conduit network. It is concluded that Taylor dispersion is not dominant in transport in a karst conduit, and the complicated retention-release process between mobile- and immobile waters may be described by strong spatially varying conduit dispersion.  相似文献   

4.
The closed-form analytical stormwater quality models are developed for simulating urban catchment pollutant buildup and washoff processes. By integrating the rainfall–runoff transformation with pollutant buildup and washoff functions, stormwater quality measures, such as the cumulative distribution functions (CDFs) of pollutant loads, the expected value of pollutant event mean concentrations (EMCs) and the average annual pollutant load can be derived. This paper presents methodologies and major procedures for the development of urban stormwater quality models based on derived probability distribution theory. In order to investigate the spatial variation in model parameters and its impact on stormwater pollutant buildup and washoff processes as well as pollutant loads to receiving waters, an extended form of the original rainfall–runoff transformation which is based on lumped runoff coefficient approach is proposed to differentiate runoff generation mechanisms between the impervious and pervious areas of the catchment. In addition, as a contrast to the aggregated pollutant buildup models formulated with a single lumped buildup parameter, the disaggregated form of the pollutant buildup model is proposed by introducing a number of physically-based parameters associated with pollutant buildup and washoff processes into the pollutant load models. The results from the case study indicate that analytical urban stormwater management model are capable of providing results in good agreement with the field measurements, and can be employed as alternatives to continuous simulation models in the evaluation of long-term stormwater quality measures.  相似文献   

5.
The New EC Framework Water Directive: Assessment of the Chemical and Ecological Status of Surface Waters The main objective of the draft EC Framework Water Directive is the good quality of all surface waters. The directive provides for an assessment of the chemical status of surface waters (EU‐wide valid environmental quality standards for approximately 30 priority substances) and a five‐stage ecological classification of waters, comprising the stages high, good, moderate, poor, and bad. The starting point for the assessment are the reference conditions, which are defined as corresponding to high water quality and characterising a water status with no significant anthropogenic impact. The reference sites in the various water body types are to be selected using hydromorphological and physico‐chemical parameters and subsequently characterised by means of biological parameters. For surface waters, three groups of characteristics are provided for, namely: 1. with priority the biology – in the case of surface waters – with the four elements phytoplankton, macrophytes/phytobenthos, benthic invertebrate fauna, and fish fauna; 2. supporting the hydromorphology, e.g. flowing waters with the three elements hydrological regime, river continuity, and morphological conditions and 3. supporting the physico‐chemical conditions with the three elements general conditions, specific synthetic pollutants, and specific non synthetic pollutants (other than the priority substances of the chemical status).  相似文献   

6.
This paper deals with the saltation of bed-load solid grains in flowing water. Experiments have been carried out by means of high-speed photographing and advanced data processing techniques while the analysis is made by combined method of mechani- cal and statistical theories. Experiments reveal that saltation is the main form of the bed-load transport under ordinary flow conditions. Taking successive saltation as the model of bed-load transport, systematic analysis has been made with regard to the forces acting on grains and the variation of their magnitudes along the saltation trajec- tories to obtain the kinematic and dynamic properties of these grains. The statistical analysis shows that the probability density functions of the relative height and length of saltation are in conformity with distribution, while the probability density functions of the relative velocities of saltation are in conformity with the Gaussian distribution.  相似文献   

7.
8.
9.
Many subsurface waters are considered groundwater but are influenced in shallow depths by hyporheic, parafluvial and/or soil interception water to such a degree that groundwater fauna (stygofauna) communities may be significantly altered. Recharge, even if spatially and temporally distinct, delivers input of dissolved oxygen, organic matter (OM), and nutrients that caters sustainably for ubiquists such as stygophiles and hyporheic fauna, but renders the life of uncompetitive stygobites difficult or impossible. The impact of recharge at shallow groundwater thus needs to be taken into account when determining groundwater fauna reference communities and when evaluating monitoring studies.One of the main characteristics of groundwater is low OM concentration. In contrast, high OM concentrations are typical of hyporheic or parafluvial waters, which are enriched by OM from the river, the riparian soils and from interflow, and which contribute significantly to river OM balance. Consequently, for ecological studies on subsurface waters, both the origin of the water and OM, and the intensity of surface water interactions should be considered. Here, we discuss how groundwater spatial and temporal heterogeneity translates into faunal distribution patterns. In terms of the origin of water and OM, and from an ecological point of view, we need to distinguish between (i) shallow groundwater characterized by infiltrating precipitation and soil recharge, (ii) shallow groundwater interacting with surface water bodies such as continuously flowing and ephemeral streams and rivers, and (iii) “old” groundwater which has no recent connections to the surface and is thus largely secluded from input of nutrients and carbon. Water in the first two groups is characterized by high amounts of OM of varying quality, while water in the third group is characterized by low amounts of low quality OM. Consequently, stygophiles dominate in groups 1 and 2, with hyporheic fauna taking up a considerable proportion in group 2, while stygobites only dominate in group 3. Thus, for studies aiming to assess impacts on groundwater, only sampling sites of the third group should be used for reference sites as these are the most likely sites to have little surface impact and a stygofauna representative of the deeper aquifer.  相似文献   

10.
A recent comprehensive survey covering 125 sites in Hong Kong waters recorded 29 soft coral species in 14 genera, 38 species of gorgonians in 19 genera and six species of black corals in two genera. Environmental variabilities based on water quality data collected by Hong Kong Environmental Protection Department were analyzed using multivariate statistics to find variables that are significantly correlated with coral distribution patterns. Eleven water quality zones with similar environmental variabilities were recognized, which could further be classified into five groups, namely Inner Bay, Outer Bay, Eastern, Western and Southern waters. LINKTREE analysis provided an overall trend indicating the importance of salinity, sediment and nutrient loadings in affecting octocoral and black coral distribution from west to east of Hong Kong waters, and from inner to outer bays. Furthermore, water turbidity and wave exposure could also affect the coral distribution patterns from north, northeast to southern waters.  相似文献   

11.
The computational aspects of using a new, entropy-based, theory to predict water quality values at discontinued water quality monitoring stations are discussed. The main computational issues addressed are the level of discretization used in converting the continuous probability distribution of water quality values to the discrete levels required for the entropy function, and the choice of the interval of time for which to assign the value of the water quality (period of time averaging) through the entropy function. Unlike most cases of entropy applications involving discretization of continuous functions the results of using entropy theory to predict water quality values at discontinued monitoring stations in this application appear to be insensitive to the choice of the level of discretization even down to the very coarse level discretization associated with only eight intervals. However, depending on the length of record available the choice of the time interval for which the water quality values are assigned (period for time averaging) appear to have a significant impact on the accuracy of the results.  相似文献   

12.
Statistical analysis of data collected in field observations of river water quality in an urban area was used to recognize characteristic features of the distribution and relationships between concentrations of mineral nitrogen forms in polluted surface waters. The distribution of the relative mole fraction of nitrites in water is always unimodal, while other N forms can have bimodal distributions. Significant correlations between the concentrations of nitrites, nitrates, ammonium, and the total mineral nitrogen were found to exist in waters heavily polluted with nitrogen compounds. These correlations are interpreted based on a simple kinetic model of nitrification and denitrification processes. Denitrification processes are shown to play an important role in nitrogen balance in polluted waters. An estimate is proposed for the admissible level of river water pollution by nitrogen-containing compounds.  相似文献   

13.
Water quality in several tributaries of the Dnepr in the southeastern part of its basin in the territory of the Republic of Belarus was estimated by six biotic indices and by the comparison with reference sites as accepted in the European Water Framework Directive. Water quality estimates obtained by different indices for the same sites are significantly different. The most adequate estimates were obtained from the British and Belgian indices for the assessment of the state of flowing waters. The comparative analysis of the two approaches showed that the method based on reference sites yields a more stringent estimate of river water quality than biotic indices.  相似文献   

14.
Specific electrical resistivity of natural waters contains information on their genesis. The authors propose to conduct mass and regime observations of this parameter in river and stream beds. The electrical resistivities in streams flowing from under a glacier reveal details formed at the same time as the glacier. Observations in the beds of big rivers show a gradual increase in water salinity overlain by reductions by inflowing glacial waters. The diurnal and annual trend of changes in the electrical conductivity of water associated with the change in the balance of glacial and ground waters has been established near to glaciers. Resistivity observations help to locate discharge sites of sub-permafrost waters, for water.  相似文献   

15.
Within the hydrodynamic modelling community, it is common practice to apply different modelling systems for coastal waters and river systems. Whereas for coastal waters 3D finite difference or finite element grids are commonly used, river systems are generally modelled using 1D networks. Each of these systems is tailored towards specific applications. Three-dimensional coastal water models are designed to model the horizontal and vertical variability in coastal waters and are less well suited for representing the complex geometry and cross-sectional areas of river networks. On the other hand, 1D river network models are designed to accurately represent complex river network geometries and complex structures like weirs, barrages and dams. A disadvantage, however, is that they are unable to resolve complex spatial flow variability. In real life, however, coastal oceans and rivers interact. In deltaic estuaries, both tidal intrusion of seawater into the upstream river network and river discharge into open waters play a role. This is frequently approached by modelling the systems independently, with off-line coupling of the lateral boundary forcing. This implies that the river and the coastal model run sequentially, providing lateral discharge (1D) and water level (3D) forcing to each other without the possibility of direct feedback or interaction between these processes. An additional disadvantage is that due to the time aggregation usually applied to exchanged quantities, mass conservation is difficult to ensure. In this paper, we propose an approach that couples a 3D hydrodynamic modelling system for coastal waters (Delft3D) with a 1D modelling system for river hydraulics (SOBEK) online. This implies that contrary to off-line coupling, the hydrodynamic quantities are exchanged between the 1D and 3D domains during runtime to resolve the real-time exchange and interaction between the coastal waters and river network. This allows for accurate and mass conserving modelling of complex coastal waters and river network systems, whilst the advantages of both systems are maintained and used in an optimal and computationally efficient way. The coupled 1D–3D system is used to model the flows in the Pearl River Delta (Guangdong, China), which are determined by the interaction of the upstream network of the Pearl River and the open waters of the South China Sea. The highly complex upstream river network is modelled in 1D, simulating river discharges for the dry and wet monsoon periods. The 3D coastal model simulates the flow due to the external (ocean) periodic tidal forcing, the salinity distribution for both dry and wet seasons, as well as residual water levels (sea level anomalies) originating from the South China Sea. The model is calibrated and its performance extensively assessed against field measurements, resulting in a mean root mean square (RMS) error of below 6% for water levels over the entire Pearl River Delta. The model also represents both the discharge distribution over the river network and salinity transport processes with good accuracy, resolving the discharge distribution over the main branches of the river network within 5% of reported annual mean values and RMS errors for salinity in the range of 2 ppt (dry season) to 5 ppt (wet season).  相似文献   

16.
藏南羊卓雍错流域水化学主离子特征及其控制因素   总被引:14,自引:1,他引:13  
孙瑞  张雪芹  吴艳红 《湖泊科学》2012,24(4):600-608
水化学主离子特征是流域湖泊的一个重要特征,对气候以及河流所经地区的环境具有指示作用.本文对藏南羊卓雍错流域水化学主离子组成特征及其控制因素进行分析,结果显示流域内不同水体(湖水、河水、地下水)之间的主离子组成以及水化学类型差异显著.其中,羊卓雍错的水化学类型为SO24--HCO3--Mg2+-Na+,巴纠错为SO24--Mg2+-Na+,沉错为SO24--Na+-Mg2+-Ca2+,普莫雍错为HCO3--SO24--Mg2+-Ca2+,空姆错为HCO3--SO24--Ca2+;流域河水中主要阴离子为HCO3-和SO24-,Ca2+为绝对优势阳离子;流域地下水化学类型则为HCO3--Ca2+.究其原因,流域水体化学组成主要受岩石风化作用控制;除此,羊卓雍错、巴纠错和沉错水化学组成亦受自身蒸发-结晶作用的影响.就入湖河水而言,羊卓雍错入湖河水整体受碳酸盐岩石风化的影响较大,蒸发岩溶解的影响次之;沉错和空姆错入湖河流(卡鲁雄曲)的蒸发岩来源则略大于碳酸盐岩来源;而硅酸盐对流域内河水的水化学性质影响较小.与入湖河水相比,羊卓雍错和沉错湖水的Mg2+、Na+和SO24-含量较高,而Ca2+和HCO3-含量较低.这应该与湖水蒸发强烈使得湖水中Ca2+和HCO3-析出并沉积到湖底有关.而空姆错由于湖泊面积小、入湖河水流量大,致使其湖水与入湖河水的主离子组成差异不显著.  相似文献   

17.
《水文科学杂志》2013,58(4):834-843
Abstract

Water quality in the Paso Piedras Reservoir has deteriorated, primarily due to periodic blue-green algal blooms, making it temporarily unfit for human consumption. This phenomenon results from the eutrophication of waters of the watershed, and nutrients are considered to be the primary contributors to degradation of freshwater quality. In order to reduce the levels of nitrogen and, most of all, phosphorus, entering the Paso Piedras Reservoir, it is necessary to understand the incidence of diffuse transfers of nutrients from agricultural soils. The nitrogen composition, soluble reactive phosphorus (SRP) and other physico-chemical parameters of the water were analysed in various different parts of the watershed in order to characterize water input to the reservoir from areas with different anthropogenic activity. The upper Sauce Grande basin was divided into three areas with different edaphic characteristics. The physico-chemical parameters measured in sampling surveys included: SRP, ammonium and nitrate, pH, conductivity, turbidity, and total solids. The results showed that the water of the Sauce Grande (areas 1 and 2) was not strongly contaminated, but in El Divisorio (Area 3, which is a sub-watershed whose stream flows directly into the Paso Piedras Reservoir), the levels of conductivity, total suspended sediments and SRP were so high that its contribution to the reservoir accounts for nearly 50% of the total SRP input. The main characteristics of El Divisorio watershed that make it a diffuse source of SRP were not only that its soils, under agricultural-livestock production, have significant slopes, so that water and wind erosion are faster, but also that human intervention had caused the destruction of aggregates. The results showed the influence of the soil characteristics, production systems and the micro-environment developed in the reservoir on the characteristics of waters flowing out of the reservoir. The two villages located in Area 2 had no significant influence on the concentration of nitrogen compounds and SRP found downstream.  相似文献   

18.
The temporal‐spatial resolution of input data‐induced uncertainty in a watershed‐based water quality model, Hydrologic Simulation Program‐FORTRAN (HSPF), is investigated in this study. The temporal resolution‐induced uncertainty is described using the coefficient of variation (CV). The CV is found to decrease with decreasing temporal resolution and follow a log‐normal relation with time interval for temperature data while it exhibits a power‐law relation for rainfall data. The temporal‐scale uncertainties in the temperature and rainfall data follow a general extreme value distribution and a Weibull distribution, respectively. The Nash‐Sutcliffe coefficient (NSC) is employed to represent the spatial resolution induced uncertainty. The spatial resolution uncertainty in the dissolved oxygen and nitrate‐nitrogen concentrations simulated using HSPF is observed to follow a general extreme value distribution and a log‐normal distribution, respectively. The probability density functions (PDF) provide new insights into the effect of temporal‐scale and spatial resolution of input data on uncertainties involved in watershed modelling and total maximum daily load calculations. This study exhibits non‐symmetric distributions of uncertainty in water quality modelling, which simplify weather and water quality monitoring and reducing the cost involved in flow and water quality monitoring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We have measured 224Ra (3.4 d), 228Ra (5.7 yr), and 226Ra (1620 yr) and chloride in hot spring waters from the Norris-Mammoth Corridor, Yellowstone National Park. Two characteristic cold-water components mix with the primary hydrothermal water: one for the travertine-depositing waters related to the Mammoth Hot Springs and the other for the sinter-depositing Norris Geyser Basin springs. The Mammoth Hot Springs water is a mixture of the primary hydrothermal fluid with meteoric waters flowing through the Madison Limestone, as shown by the systematic decrease of the (228Ra/226Ra) activity ratio proceeding northward. The Norris Geyser Basin springs are mixtures of primary hydrothermal water with different amounts of cold meteoric water with no modification of the primary hydrothermal (228Ra/226Ra) activity ratio. Using a solution and recoil model for radium isotope supply to the primary hydrothermal water, a mean water-rock reaction time prior to expansion at 350°C and supply to the surface is 540 years assuming that 250 g of water are involved in the release of the radium from one gram of rock. The maximum reaction time allowed by our model is 1150 years.  相似文献   

20.
Su GW  Quinn NW  Cook PJ  Shipp W 《Ground water》2006,44(5):754-757
An understanding of the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of ground water for conjunctive water use and for maintaining suitable ground water quality in agricultural regions where ground water is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity (FEC) logging method can be analyzed to estimate interval-specific hydraulic conductivity and estimates of the salinity concentration with depth. However, operating irrigation wells commonly allow limited access, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed for use in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well reduces the time required to perform FEC logging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号