首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
时程分析输入地震波的选取对长周期大跨度桥梁影响显著。本文基于规范目标谱,以MATLAB为依托,通过选取最优小波基并利用小波系数迭代法实现频域调整,使地震波反应谱不断逼近给定目标谱,最后结合相对误差和长周期拟合参数两个指标进行综合评价,选取适用于长周期大跨度桥梁的时程分析地震波,提出长周期桥梁全过程批量选波方法。将该方法应用于奉节长江大桥,与基于时域调整方法的Seismo Match选波软件对比选波效果,并将选波结果应用于背景桥梁的时程分析。结果表明,利用本文选波方法所得结构关键截面响应与软件选波所得响应在横桥向和竖桥向存在一定差异。本文方法可为长周期大跨度桥梁时程分析选波提供参考。  相似文献   

2.
行波效应对铁路大跨连续刚构桥地震反应的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了模拟地震地面运动的大质量法,推导了大跨度桥梁考虑行波效应的分析模型及解析方法。以大准黄河特大桥为工程背景,选取墩身刚度、地震波视波波速及不同的地震记录为主要参数,进行了考虑行波效应下铁路大跨连续刚构桥的时程反应分析,并与一致激励下的结果进行了对比。系统总结了此类桥梁在行波效应激励下的地震反应特点。本文分析方法和结果对同类桥梁的设计与研究具有一定的参考价值。  相似文献   

3.
高烈度区大跨刚构-连续梁桥地震响应分析   总被引:1,自引:1,他引:0       下载免费PDF全文
魏鑫  卫星  李明清 《地震工程学报》2017,39(6):1005-1010
为研究大跨刚构-连续梁桥在高烈度地区的地震响应,选取羊记沟左线大桥为工程背景,利用Midas软件建立多个有限元模型,考虑纵、横桥向的水平地震波输入,比较反应谱与时程分析结果,获得结构动力响应特点,为大跨刚构-连续梁桥的抗震设计提供参考依据。结果表明:刚构-连续体系仅单墩刚构时不宜采用反应谱分析,高烈度地区桥梁进行地震响应时程分析时,选用与场地适应的地震波的同时,应考虑采用本地地震参数转化人工波作为地震激励源。桥墩不等高时,可通过改变墩截面形状及其与主梁连接方式调节内力分布,避免矮墩刚度大导致的内力集中。  相似文献   

4.
It is generally known that the variability of earthquake ground motion is mainly in time and space. To investigate the impact of this variability on the seismic performance of a long-span flexible structure, we discuss the seismic dynamic responses of a real bridge subjected to stochastic seismic ground motion. We incorporate the effect of wave passage by means of the method of probability density evolution based on dynamic time-history analysis from the perspective of stochastic dynamics. First, we introduce the theory of probability density evolution and a category of stochastic seismic model. We then conduct a series of deterministic seismic dynamic analyses of the bridge to establish the probability density equation. Eventually, we obtain the probability information at the level of the probability density function of the seismic response by solving the probability-density evolution equation. The results show that the impact of travelling waves on a long-span structure is related to the characteristics of the earthquake ground motion and the structure, and that travelling waves increase the variability of the seismic response.  相似文献   

5.
随机地震动场多点激励下大跨度桥梁地震反应分析方法   总被引:11,自引:3,他引:11  
地震输入问题一直是工程结构抗震研究关注的焦点。对大跨度桥梁结构,考虑随机地震动场的多点激励而进行地震反应分析较为合理。本文结合大跨度桥梁抗震设计,系统地介绍了随机地震动场的模型以及随机地震动场多点激励下大跨度桥梁地震反应分析的方法。  相似文献   

6.
The effects of hanger replacement from inclined to vertical configuration on seismic response of long-span suspension bridges are investigated considering multi-support earthquake excitation. The Bosphorus Bridge is investigated due to its recent comprehensive rehabilitation, mainly involving hanger replacement. The finite-fault stochastic simulation method (FINSIM) is utilized for multi-point earthquake time-history generation. The developed finite element (FE) model both for the inclined and vertical hanger arrangement are verified through the structural health monitoring (SHM) data. Based on the comparative analysis, the tension force of vertical hangers is found to be lower than that of inclined hangers, whereas the tension force of the main and back-stay cables remains the same. The compressive axial force of the deck decreases relatively in the case of the vertical hanger arrangement, whereas the cross-sectional forces at the tower base section increase. The approach viaducts are not affected by the vertical hanger arrangement. According to the demand/capacity ratios for damage estimation under the max. earthquake (2475 years return period), structural damage on the tower base section may be expected for both hanger arrangements, while these sections perform well under design scenario earthquake. The expansion joint of the bridge with inclined hangers is also estimated to be damaged; however, this displacement is lower in the case of the vertical hanger arrangement due to the viscous dampers. The findings also reveal that a change in hanger form of a suspension bridge can necessitate other structural retrofit, such as using viscous dampers to limit longitudinal displacements of the deck and retrofitting the bridge towers.  相似文献   

7.
This paper presents the results from earthquake performance assessment and retrofit investigations for Fatih Sultan Mehmet and Bosporus suspension bridges, with main span lengths of 1090 and 1074 m in Istanbul. In the first part of the study, sophisticated three-dimensional finite element model of two suspension bridges were developed and the results of the free vibration analysis were presented. The models contain detailed structural components of the bridges and geometric non-linearity with cable sagging and stress stiffening, cumber of the deck and set-back of the towers. These components affect the natural frequencies and the corresponding mode shapes of the bridges. In the second part of the study, the seismic performance evaluation of two suspension bridges was undertaken. For performance assessments, non-linear 3-D finite-element time history analysis of with multi-support scenario earthquake excitation was used. Displacements and stresses at critical points of the bridges were investigated. Their earthquake performance under the action of scenario earthquake (site-specific ground motion that would result from the Mw=7.5 scenario earthquake on the Main Marmara Fault) were estimated and comparison with actual design data were also presented. Although both suspension bridges were originally designed for much lower earthquake loads they exhibited satisfactory performance. Finally, suggestions for retrofit need were made and retrofit design with hysteretic dampers for the Bosporus suspension bridge was calculated.  相似文献   

8.
大跨斜拉桥的近断层地震响应及减震控制   总被引:2,自引:0,他引:2  
近断层地震长周期成分丰富,存在速度大脉冲效应;而大跨度斜拉桥一般采用半漂浮体系或漂浮体系,所以固有频率较低。为了研究大跨度斜拉桥在近断层地震作用下的反应规律及减震措施,利用ANSYS软件分析了某半漂浮体系的大跨斜拉桥在近断层地震作用下的时程响应,并对其减震控制方法进行了探讨。研究表明,大跨度斜拉桥的近断层地震响应随着PGV/PGA值的增大而增大,且增大幅度较大,近场脉冲效应较为显著;对于近断层地震作用,不建议采用塔梁弹性连接装置作为主梁纵漂的减震措施,而采用参数适宜的铅挤压阻尼器和粘滞阻尼器则均能获得很好的减震效果;由于大跨度斜拉桥的近断层地震反应较大,应提高其支座的设计允许位移。  相似文献   

9.
The dynamic non-linear behaviour of three-dimensional long-span cable-stayed bridges under seismic loadings is studied. The cases of multiple-support as well as uniform seismic excitations of these long and flexible structures are considered. Different sources of non-linearity for such bridges are included in the analysis, as outlined in the companion paper. In this accompanying analysis a tangent stiffness iterative procedure is utilized to estimate the non-linear seismic response. Numerical examples are presented in which a comparison between a linear earthquake-response analysis (based on the utilization of the tangent stiffness matrix of the bridge at the dead-load deformed state which is obtained from the geometry of the bridge under gravity load conditions) and a non-linear earthquake response analysis using the step-by-integration procedure is made. In these examples two three-dimensional bridge models representing recent and future trends in cable-stayed bridge design are utilized. The study sheds some light on the salient features of the seismic analysis and design of these long contemporary bridges. In addition, parameters affecting the seismic response of these bridges are discussed: other factors considered are non-linearity, uniformity and spatial variation of ground motion inputs and structural configuration.  相似文献   

10.
Theoretical dynamic characteristics of the Fatih Bridge in terms of natural frequencies and mode shapes of free vibration were obtained using a range of finite element models. Based on this free-vibration data, separate analyses of the asynchronous response of the bridge to earthquake excitation in three orthogonal axes with different speeds of wave propagation, and of stochastic response to vertical excitation were used to estimate levels of dynamic response due to seismic loading. Fatih is the third of three modern European long-span box-girder suspension bridges that have been investigated and the relationship of the different design features and the dynamic responses of this type of bridge is reviewed. The main conclusion is that where seismic response is an important consideration, the effects of asynchronous excitation can be significant and must be considered.  相似文献   

11.
大跨度桥梁结构在地震发生时其支承点受到的地震动激励均不相同,使得在多级地震中其桥梁结构对于地震的响应程度也不同。通过分析多级地震作用下,水中结构的运动引起桥梁墩部周围水体辐射波浪运动对桥梁结构的影响,分析大跨度桥梁墩-水耦合边界。基于反应谱理论,计算大跨度桥梁结构承受的地震力最大值,得出多级地震响应曲线,以分析其多级地震响应;并以某地六跨桥为例,以多级地震下桥梁的位移、剪力、弯矩等响应时程为指标进行分析,得出有效结论。  相似文献   

12.
Two practical approaches, response spectrum and time-history methods, are developed to evaluate the response of flexible multi-degree-of-freedom (MDF) systems, notably long-span bridges, to multiple-support seismic excitations. For practical convenience, ground motions within a group of adjacent supports on continuous soil or rock are assumed to be uniform and synchronized, while those of different groups are treated as non-uniform and uncorrelated. The response spectrum analysis is extended to include the cross-correlation of modal responses, which prove important when closely spaced modal frequencies exist. An example of the significance of multiple-support excitations is illustrated by application to a suspension bridge. Qualitatively comparable effects can be expected for other bridges of similar type or dimensions.  相似文献   

13.
几条地震波的归一化时-频反应谱分析   总被引:2,自引:0,他引:2       下载免费PDF全文
时-频反应谱是地震动幅值、频谱和持时三要素构成的空间三维谱.基于此,本文提出归一化时-频反应谱定义与计算方法,计算三条典型地震波的归一化时-频反应谱,对比分析表明:不同地震记录的时-频反应谱的幅值在时间和周期两个轴上的分布差别很大,具有不同时-频反应谱的地震波可能对结构地震响应产生不同影响;对12层钢筋混凝土框架结构模型进行弹塑性时程分析,通过结构地震反应、结构损伤曲线与输入地震动的归一化时-频反应谱对比,发现结构最大反应并不一定是造成结构倒塌的直接原因,用结构弹性阶段反应最大值进行抗震设计存在一定局限性,从而证明归一化时-频反应谱可有效用来分析地震动特性和结构破坏机理.  相似文献   

14.
In this paper, a comprehensive investigation of the effect of spatially varying earthquake ground motions on the stochastic response of bridges isolated with friction pendulum systems is performed. The spatially varying earthquake ground motions are considered with incoherence, wave-passage and site-response effects. The importance of the site-response effect, which arises from the difference in the local soil conditions at different support points of the isolated bridge, is investigated particularly. Mean of maximum and variance response values obtained from the spatially varying earthquake ground motions are compared with those of the specialised cases of the ground motion model. It is shown that site-response component of the spatially varying earthquake ground motion model has important effects on the stochastic response of the isolated bridges. Therefore, to be more realistic in calculating the isolated bridge responses, the spatially varying earthquake ground motions should be incorporated in the analysis.  相似文献   

15.
The study aims at investigating the structural behavior of the Fatih Sultan Mehmet Suspension Bridge, i.e. the second Bosphorus Bridge in Turkey, under multi-point earthquake excitations, and determining the earthquake performance of the bridge based on the results obtained from this analysis. For this objective, spatially varying ground motions in triple direction were produced for each support of the bridge considering the Mw=7.4 scenario earthquakes on the main Marmara Fault. In order to simulate the ground motions, modified stochastic finite-fault technique was utilized. Taking the ground motions into account, non-linear time-history analysis was carried out, and the results obtained from the analysis were compared to those from uniform support earthquake excitation to identify the effects of multi-point earthquake excitations on the seismic performance of the bridge. From the analysis, it was determined that modal response of the towers and the deck was mostly effective on dynamic response of the entire bridge rather than other structural elements, such as cable and approach viaduct. Compared to the results obtained from simple-point earthquake excitation, noticeable axial force increase in the cable elements was obtained under multi-point earthquake excitation. The changes at the main cable and the side span cable were determined as 21% and 18%, respectively. This much increase in the cable elements led to increase in axial force at the towers and in shear force at the base section of the tower column. These changes in the structural elements were closely related to response of the deck and the towers since they had considerable contribution to response of the entire bridge. Based on the findings from the study, spatially varying ground motions has to be considered for long span suspension bridges, and the multi-support earthquake analysis should be carried out for better understanding and obtaining reliable results necessary for retrofitting and performance evaluation.  相似文献   

16.
多点激励下大跨度斜拉桥地震反应分析   总被引:2,自引:0,他引:2  
大跨斜拉桥是交通运输的枢纽工程,一旦在地震中遭到破坏,将会造成巨大的直接和间接经济损失.由于大跨斜拉桥的跨度大,在地震中地震波到达不同桥墩的时间存在差异,这会对大跨斜拉桥的地震反应产生很大影响.因此,对大跨斜拉桥在多点输入下的反应开展研究,对进行正确有效的抗震设计,确保其抗震安全性具有非常重要的意义.本文分析了多点激励下大跨度斜拉桥的地震反应,并与一致激励下大跨度斜拉桥的地震反应进行了对比,研究了多点激励对大跨度斜拉桥地震反应的影响.  相似文献   

17.
因大跨径悬索桥梁具有较大的跨越尺度,同时墩柱基础所处场地条件也存在差异,所以对其进行地震响应分析时需考虑局部场地效应。为了正确分析场地效应对大跨度桥梁的地震响应,以某悬索桥为研究背景,采用MIDAS/CIVIL有限元软件,建立该悬索桥的有限元模型,在考虑地震动的局部场地效应情况下列举9种不同的计算工况,对大跨度悬索桥进行时程分析,通过控制一个塔墩处场地类别,改变另一个塔墩处的场地类别来分析场地效应对桥梁跨中位移和弯矩的影响。研究结果显示:场地效应对悬索桥的跨中位移和弯矩存在一定影响,不同的场地条件对桥梁同一位置的破坏程度不同。  相似文献   

18.
高烈度地震对铁路桥梁安全造成巨大隐患,且次生灾害将引起较大经济损失。该大跨连续梁桥所处地震带正进入活跃期,未来有发生较大规模强烈地震的可能,但桥梁自身不具备高烈度抗震能力,需利用粘滞阻尼器对其进行减震处理。采用斜向设置阻尼器并配合双曲面球型支座,来控制可能发生的纵向和横向地震。通过数值模拟进行阻尼器参数敏感性分析以及减震效果讨论,进而确定其最优设置方案。选取相关参数作为评价指标,对比加设阻尼器前后易损部位的地震响应,确定其在高烈度地震荷载激励下的减震效果。研究结果表明:在液体粘滞阻尼器的作用下,使得各墩协同受力,大大增加了结构的整体性,同时能很好弥补减隔震支座不能很好的控制上部结构位移的缺点,同时能降低罕遇地震力对桥墩的冲击损伤。因此,在高烈度区大跨度桥梁中更有必要设置阻尼器来抗震。  相似文献   

19.
空间相关性对大跨度空间结构的影响不容忽视。本文采用动力时程分析方法对圆柱面巨型网格结构进行了多点激励下的地震响应分析,并与一致激励下的结构地震响应进行对比,探讨了主体结构单独承载和子结构参与协同承载这2种情况下,不同行波激励对结构关键节点和杆件响应的影响及其变化特点;通过比较分析结构在多点激励和一致激励下的响应差异,得出圆柱面巨型网格结构在地震输入时需考虑多点激励的结论,可供该类结构的抗震设计参考。  相似文献   

20.
为完善超长联大跨连续梁桥的减、隔震技术,将负刚度装置引入到超长联大跨隔震连续梁桥中组成新型减、隔震系统,并与黏滞阻尼器-摩擦摆支座组合减震系统进行比较。基于CSiBridge软件建立全桥有限元模型,负刚度装置采用弹性多段线模拟,摩擦摆支座采用双线性恢复力模型,黏滞阻尼器采用Maxwell模型,输入3条地震波进行非线性时程分析,考查两种新型减、隔震系统下桥梁结构的地震反应,探究负刚度系统及黏滞阻尼器系统对超长联大跨连续梁桥地震反应的控制效果。研究结果表明:负刚度装置与黏滞阻尼器均可以有效地减小超长联大跨隔震连续梁桥的支座位移。负刚度装置对桥墩内力反应及梁体加速度反应的控制优于黏滞阻尼器。负刚度装置在超长联大跨连续梁桥地震反应控制中有较好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号