首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Field investigations following the 2008 Wenchuan earthquake (Ms=8.0) identified 118 liquefaction sites nearly all of which are underlain by gravelly sediment in the Chengdu Plain and adjacent Mianyang area. Field studies, including core drilling, dynamic penetration tests (DPT), and multiple channel analysis of surface wave velocity tests (MASW) for measurement of shear wave velocities, reveal the following: (1) Sand boils and ground fissures, indicative of liquefaction, occurred across hundreds of square kilometers affecting 120 villages, 8 schools and 5 factories. (2) The Chengdu plain is underlain by sandy gravels ranging in thickness up to 540 m; loose upper layers within the gravels beds liquefied. (3) Mean grain sizes for gravelly layers that liquefied range from 1 mm to more than 30 mm. (4) Shear wave velocities in gravels that liquefied range up to 250 m/s. (5) A 50% probability curve, developed from logistic procedures, correctly bounds all but four data points for the 47 compiled Vs data.  相似文献   

3.
4.
Flume experiments were conducted using four different gravel beds (D50 + 12–39 mm) and a range of marked particles (10–65 mm). The shear stresses were evaluated from friction velocities, when initial movement of marked particles occurred. Two kinds of equations were produced: first for the threshold of initial movement, and second for generalized movement. Equations of the type 0c + a(Di/D50)b, as proposed by Andrews (1983) are applicable even if the material is relatively well sorted. However, the values of a and b are lower (respectively 0·050 and -0·70) for initial movement. Generalized movement requires a higher shear stress (a + 0·068 and b + -0·80). D90 of the bed material and y0 (the bed roughness parameter) were also used as reference values in place of D50. They produced lower values than in natural streams, mainly owing to the fact that the material used in the flume is better sorted: clusters are less well developed and the bed roughness is lower.  相似文献   

5.
Turbulent flow in a meandering channel is computed with two Computational Fluid Dynamics (CFD) codes solving the Navier–Stokes equations by employing different turbulence closure approaches. The first CFD code solves the steady Reynolds-Averaged Navier–Stokes equations (RANS) using an isotropic turbulence closure. The second code is based on the concept of Large Eddy Simulation (LES). LES resolves the large-scale turbulence structures in the flow and is known to outperform RANS models in flows in which large-scale structures dominate the statistics. The results obtained from the two codes are compared with experimental data from a physical model study. Both, LES and RANS simulation, predict the primary helical flow pattern in the meander as well as the occurrence of an outer-bank secondary cell. Computed primary as well as secondary flow velocities are in reasonably good agreement with experimental data. Evidence is given that the outer-bank secondary cell in a meander bend is the residual of the main secondary cell of the previous bend. However, the RANS code, regardless of the turbulence model employed, overpredicts the size and strength of the outer-bank secondary cell. Furthermore, only LES is able to uphold the outer-bank second secondary cell beyond the bend apex until the exit of the bend as turbulence anisotropy contributes to its persistence. The presence of multiple secondary cells has important consequences for the distribution of shear stresses along the wetted perimeter of the channel, and thereby the sediment transport in meandering channels. Consequently, even though LES is expected to compute the bed-shear stresses along the wetted perimeter of the channel with a higher degree of accuracy than the RANS model, comparisons between LES and RANS computed wall shear stresses agree well. These findings are useful for practitioners who need to rely on RANS model predictions of the flow in meandering channels at field scale.  相似文献   

6.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The effect of turbulent flow structures on saltation sand transport was studied during two convective storms in Niger, West Africa. Continuous, synchronous measurements of saltation fluxes and turbulent velocity fluctuations were made with a sampling frequency of 1 Hz. The shear stress production was determined from the vertical and streamwise velocity fluctuations. The greatest stress-bearing events were classified as turbulent structures, with sweep, ejection, inward interaction, and outward interaction described according to the quadrant technique. The classified turbulent structures accounted for 63·5 per cent of the average shear stress during the first storm, and 56·0 per cent during the second storm. The percentage of active time was only 20·6 per cent and 15·8 per cent, respectively. High saltation fluxes were associated with sweeps and outward interactions. These two structures contribute positively (sweeps) and negatively (outward interactions) to the shear stress, but have in common that the streamwise velocity component is higher than average. Therefore, the horizontal drag force seems primarily responsible for saltation sand transport, and not the shear stress. This was also reflected by the low correlation coefficients (r) between shear stress and saltation flux (0·12 and 0·14, respectively), while the correlation coefficients between the streamwise velocity component and saltation flux were much higher (0·65 and 0·57, respectively). © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Near‐bed, highly resolved velocity profiles were measured in the lower 0.03 m of the water column using acoustic Doppler profiling velocimeters in narrow tidal channels in a salt marsh. The bed shear stress was estimated from the velocity profiles using three methods: the log‐law, Reynolds stress, and shear stress derived from the turbulent kinetic energy (TKE). Bed shear stresses were largest during ebbing tide, while near‐bed velocities were larger during flooding tide. The Reynolds stress and TKE method gave similar results, while the log‐law method resulted in smaller bed shear stress values during ebbing tide. Shear stresses and turbulent kinetic energy followed a similar trend with the largest peaks during ebbing tide. The maximum turbulent kinetic energy was on the order of 1 × 10? 2 m2/s2. The fluid shear stress during flooding tide was approximately 30% of the fluid shear stress during ebbing tide. The maximum TKE‐derived shear stress was 0.7 N/m2 and 2.7 N/m2 during flooding and ebbing tide, respectively, and occurred around 0.02 m above the bed. Turbulence dissipation was estimated using the frequency spectrum and structure function methods. Turbulence dissipation estimates from both methods were maximum near the bed (~0.01 m). Both the structure function and the frequency spectrum methods resulted in maximum dissipation estimates on the order of 4 × 10? 3 m2/s3. Turbulence production exceeded turbulence dissipation at every phase of the tide, suggesting that advection and vertical diffusion are not negligible. However, turbulence production and dissipation were within a factor of 2 for 77% of the estimates. The turbulence production and dissipation decreased quickly away from the bed, suggesting that measurements higher in the water column cannot be translated directly to turbulence production and dissipation estimates near the bed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Shear velocity u* is an important parameter in geophysical flows, in particular with respect to sediment transport dynamics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reynolds stress profile, the turbulent kinetic energy (TKE) profile, the wall similarity and spectral methods] that were initially developed to estimate shear velocity in smooth bed flow to turbulent flow over a loose bed of coarse gravel (D50 = 1·5 cm) under sub‐threshold conditions. The analysis is based on quasi‐instantaneous three‐dimensional (3D) full depth velocity profiles with high spatial and temporal resolution that were measured with an Acoustic Doppler Velocity Profiler (ADVP) in an open channel. The results of the analysis confirm the importance of detailed velocity profile measurements for the determination of shear velocity in rough‐bed flows. Results from all methods fall into a range of ± 20% variability and no systematic trend between methods was observed. Local and temporal variation in the loose bed roughness may contribute to the variability of the logarithmic profile method results. Estimates obtained from the TKE and Reynolds stress methods reasonably agree. Most results from the wall similarity method are within 10% of those obtained by the TKE and Reynolds stress methods. The spectral method was difficult to use since the spectral energy of the vertical velocity component strongly increased with distance from the bed in the inner layer. This made the choice of the reference level problematic. Mean shear stress for all experiments follows a quadratic relationship with the mean velocity in the flow. The wall similarity method appears to be a promising tool for estimating shear velocity under rough‐bed flow conditions and in field studies where other methods may be difficult to apply. This method allows for the determination of u* from a single point measurement at one level in the intermediate range (0·3 < h < 0·6). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Erodibility of cohesive streambeds in the loess area of the midwestern USA   总被引:2,自引:0,他引:2  
Excess stress parameters, critical shear stress (τc) and erodibility coefficient (kd), for degrading channels in the loess areas of the midwestern USA are presented based on in situ jet‐testing measurements. Critical shear stress and kd are used to define the erosion resistance of the streambed. The jet‐testing apparatus applies hydraulic stresses to the bed and the resulting scour due to the impinging jet is related to the excess stress parameters. Streams tested were primarily silt‐bedded in texture with low densities, which is typical of loess soils. Results indicate that there is a wide variation in the erosion resistance of streambeds, spanning six orders of magnitude for τc and four orders of magnitude for kd. Erosion resistance was observed to vary within a streambed, from streambed to streambed, and from region to region. An example of the diversity of materials within a river system is the Yalobusha River Basin in Mississippi. The median value of τc for the two primary bed materials, Naheola and Porters Creek Clay Formations, was 1·31 and 256 Pa, respectively. Streambeds composed of the Naheola Formation are readily eroded over the entire range of shear stresses, whereas only the deepest flows generate boundary stresses great enough to erode streambeds composed of the Porters Creek Clay Formation. Therefore, assessing material resistance and location is essential in classifying and modelling streambed erosion processes of these streams.  相似文献   

12.
Concentrated flow erosion rates reduced through biological geotextiles   总被引:1,自引:0,他引:1  
Soil erosion by concentrated flow can cause serious environmental damage. Erosion‐control geotextiles have considerable potential for reducing concentrated flow erosion. However, limited data are available on the erosion‐reducing potential of geotextiles. In this study, the effectiveness of three biological geotextiles in reducing soil losses during concentrated flow is investigated. Hereto, runoff was simulated in a concentrated flow flume, filled with an erodible sandy loam on three slope gradients (13·5, 27·0 and 41·5%). Treatments included three biological geotextiles (borassus, buriti and bamboo) and one bare soil surface. Darcy–Weisbach friction coefficients ranged from 0·01 to 2·84. The highest values are observed for borassus covered soil surfaces, followed by buriti, bamboo and bare soil, respectively. The friction coefficients are linearly correlated with geotextile thickness. For the specific experimental conditions of this study, borassus geotextiles reduced soil detachment rate on average to 56%, buriti geotextiles to 59% and bamboo geotextiles to 66% of the soil detachment rate for bare soil surfaces. Total flow shear stress was the hydraulic parameter best predicting soil detachment rate for bare and geotextile covered surfaces (R2 = 0·75–0·84, <0·001, n = 12–15). The highest resistance against soil detachment was observed for the borassus covered soil surfaces, followed by buriti, bamboo and bare soil surfaces, respectively. Overall, biological geotextiles are less effective in controlling concentrated flow erosion compared with interrill erosion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
汶川地震砾性土液化场地特征解析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过成都平原砾性土场地勘察测试,研究汶川地震中大量砾性土液化场地的基本特性,找出一般规律,对砾性土场地液化发生主客观原因提出解释,并修正以往若干认识偏差.分析表明:汶川地震液化砾性土层粒径范围宽,含砾量5%~85%甚至更大,同时其实测剪切波速140~270 m·s~(-1),修正剪切波速160~314 m·s~(-1),都远超历史记录;液化砾性土场地1/2集中在Ⅷ度区内,表明如砂土层液化一样,砾性土场地大规模液化需要较强地震动触发,但超过触发强度后液化规模增长均有限;成都平原浅表地层二元基本结构是汶川地震中出现大量砾性土场地的客观条件之一,该结构可使饱和砾性土层处于封闭状态,构成了砾性土液化的基本条件;虽然液化砾性土层剪切波速很高,但实际上大多松散状态,是此次地震大量砾性土场地发生液化的客观条件之二;地震中地表(井中)喷出物与地下实际液化土类大相径庭,且液化层埋深大多小于6.0 m,以往以地表喷出物反推地下液化层土性类型的做法不再成立;认为砾性土层波速大、透水性好而不会液化的传统认识也不再成立,但砾性土层液化条件与砂土层液化条件不同,前者要求更高.  相似文献   

14.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Multibeam bathymetry acquired under the MAREANO programme from the continental shelf off Nordland and Troms, northern Norway, show bedforms that we have interpreted as rippled scour depressions. They occur in three areas offshore on bank slopes facing southeast, more than 15 km from land. They are generally found where the slope gradient is low, in water depths of 70–160 m. Individual depressions are up to 3 km long, 1 m deep and up to 300 m wide. They occur in areas where sediments evolve quickly from glacial deposits on the banks to post-glacial muddy sediments on the glacial troughs. Multibeam backscatter and underwater video data show that depression floors are covered by rippled, gravelly, shelly sand. Ripple crests are parallel or slightly oblique to the depression axis orientation. Sand without bedforms is observed between the depressions. TOPAS seismic lines show that the uppermost seismic unit consists of the sand between the depressions. The base of this unit may be the last transgressive/tidal/wave ravinement surface. Physical oceanographic modelling indicates that maximum current velocities are up to 0.6 m/s in the rippled scour depression areas. Stronger currents appear to inhibit the building of these features. Tidal currents play an important role as they trend parallel to the southeast banks slopes and are likely responsible of the gravelly ripples formation inside the depressions as well as the persistence of these depressions which are not covered by finer sediments. On Malangsgrunnen bank, some of the rippled scour depressions are in the extension of NW–SE furrows located on the bank. Simulated bottom currents indicate currents mainly perpendicular to these furrows, as for the rippled scour depressions on the bank slopes. Nevertheless, these features could also highlight currents coming from the northwest which reach the bank margin and continue down to the areas of the rippled scour depressions. These currents could be responsible for the formation of some of the bedforms, together with tidal currents.  相似文献   

16.
土体剪切波速具有显著的不确定性。基于全国地震安全性评价工作实测的粘性土的大量剪切波速数据,采用2χ检验方法研究了粘性土不同埋深的剪切波速的概率分布。依据所获得的概率分布,采用相应的统计方法给出了粘性土不同埋深的剪切波速的平均值、最大值、最小值、标准差和变异系数,并给出了95%参考值下限和上限,所获得的结果可用于检验场地剪切波速测试结果的可靠性和粗略估计无实测资料场地土的剪切波速。  相似文献   

17.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

18.
Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre‐existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ‘interrill’ zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11–0·12 m and 0·06–0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
平面应变双轴压缩岩样剪应力异常及破坏过程模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
利用FLAC,模拟了双轴压缩岩样的破坏过程及剪应力异常.在峰值强度之前及之后,岩石的本构模型分别取为线弹性及莫尔库仑剪破坏与拉破坏复合的应变软化模型.本文仅分析了3个具有较大应力降的周期的剪应力异常及塑性区分布.在第1及第2周期,剪破坏分别发生在试样的两侧及背景空区内部,前兆明显,地震属于断错型.在第3周期,背景空区之外的新剪切破裂带引起断错型地震;空区内部的老破裂带引起走滑型地震,未观测到前兆.在塑性区边缘,剪应力梯度较高.破裂带位置剪应力值反而较低.尽管在应力-应变曲线的软化阶段之前,不同单元的剪应力表现出千姿百态的复杂形态,但尚有规律可循.若几个单元都位于某条破裂带上,则剪应力的变化可能是同步的,或演变规律类似.鉴于原地复发地震类型可能不同,前兆将有差别.  相似文献   

20.
Alluvial mountain streams exhibit a range of channel forms: pool–riffle, plane bed, step–pool and cascades. Previous work suggested that these forms exist within discrete, and progressively steeper slope classes. Measurements conducted at over 100 sites in west‐central and central Idaho confirm that slope steepens progressively as one moves from pool–riffle, to plane bed, to step–pool, and finally to cascades. Median slope for pool–riffle topography is 0·0060, for plane beds 0·013, for step–pools 0·044, and for cascades 0·068. There is substantial overlap in the slopes associated with these channel forms. Pool–riffle topography was found at slopes between 0·0010 and 0·015, plane beds between 0·0010 and 0·035, step–pools between 0·015 and 0·134, and cascades between 0·050 and 0·12. Step–pools are particularly striking features in headwater streams. They are characterized by alternating steep and gentle channel segments. The steep segments (step risers) are transverse accumulations of boulder and cobbles, while the gentle segments (pools) contain finer material. Step wavelength is best correlated to step height which is in turn best correlated to the median particle size found on step risers. This result differs from past studies that have reported channel slope to be the dominant control on step wavelength. The presumed geometry and Froude number associated with the features under formative conditions are consistent with the existence field for antidunes and by extension with the hypothesis that step–pools are formed by antidunes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号