首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We examined the relevance of dissolved inorganic nitrogen (DIN) forms (nitrate and ammonium) in stream water as N sources for different macrophyte species. To do this, we investigated the variability and relationships between 15N natural abundance of DIN forms and of four different macrophyte species in five different streams influenced by inputs from wastewater treatment plants and over time within one of these streams. Results showed that 15N signatures were similar in species of submersed and amphibious macrophytes and in stream water DIN, whereas 15N signatures of the riparian species were not. 15N signatures of macrophytes were generally closer to 15N signatures of nitrate, regardless of the species considered. Our results showed significant relationships between 15N signatures of DIN and those of submersed Callitriche stagnalis and amphibious Veronica beccabunga and Apium nodiflorum, suggesting stream water DIN as a relevant N source for these two functional groups. Moreover, results from a mixing model suggested that stream water DIN taken up by the submersed and amphibious species was mostly in the form of nitrate. Together, these results suggest different contribution to in-stream N uptake among the spatially-segregated species of macrophytes. While submersed and amphibious species can contribute to in-stream N uptake by assimilation of DIN, macrophyte species located at stream channel edges do not seem to rely on stream water DIN as an N source. Ultimately, these results add a functional dimension to the current use of macrophytes for the restoration of stream channel morphology, indicating that they can also contribute to reduce excess DIN in streams.  相似文献   

3.
Blackfly communities from five German stream types out of two ecoregions (small and mid-sized siliceous gravel-bed mountain streams of the Central mountains, ecoregion 9, and organic type brooks, small and mid-sized sand-bottomed Central lowland streams of ecoregion 14) are compared. Ecoregional, as well as stream type-specific biocoenotic differences are discussed. The presence of Prosimulium sp. was restricted to mountain streams, whereas Simulium lineatum seemed to prefer mid-sized sand-bottomed Central lowland streams, and S. vernum showed a clear preference for Central lowland streams. An Index of Morphological Stress (IMS), derived from 22 geo-hydromorphological parameters recorded during sampling in the field, is presented. According to the IMS values, sites are divided into morphologically ‘unstressed’ sites (high or good morphological quality) and ‘stressed’ sites (moderate, poor or bad morphological quality), and biocoenotic differences of the two categories are discussed. Two stream types and the entire data set showed significantly higher numbers of taxa at ‘unstressed’ sites. Linear Multiple Regression (LMR) was used to identify geo-hydromorphological parameters that significantly explain the variance of the three most constant taxa, Prosimulium sp., P. hirtipes and Simulium sp. in the LMR model.  相似文献   

4.
5.
汉江上游是丹江口水库的水源区,其生态环境状况对保障汉江全流域及南水北调中线生态安全起着举足轻重的作用.本研究于2017年11月和2018年4月对汉江上游干流及源于秦岭南麓的5条典型支流开展了系统调查,旨在摸清汉江上游干支流的底栖动物群落特征,以及评价其水质状况.共采集到大型底栖动物240种,其中水生昆虫209种,软体动物13种,环节动物9种,其他类群9种.其中四节蜉Baetis sp.在各条河流中均为优势种,此外其他优势种还有拟细裳蜉Paraleptophlebia sp.、细蜉Caenis sp.、扁蜉Heptagenia sp.、花翅蜉Baetiella sp.、直突摇蚊Orthocladius sp.、纹石蛾Hydropsyche sp.、蜉蝣Ephemera sp.、带肋蜉Cincticostella sp.、高翔蜉Epeorus sp.、似波摇蚊Sympotthastia sp.和真开摇蚊Eukiefferiella sp..从各类群的密度来看,水生昆虫在汉江及五条支流中均占有绝对优势,占总密度的90.8%~98.9%,而在生物量上,除汉江干流中软体动物占绝对优势外,水生昆虫在各支流中均占绝对优势,占总生物量的47.0%~98.9%.就功能摄食类群的密度而言,直接收集者在汉江干支流中均为最主要功能摄食类群,而从生物量方面来看则表现出差异性,捕食者是金水河和旬河中最主要功能摄食类群,刮食者为汉江干流和月河中最主要功能摄食类群,直接收集者是金钱河中最主要功能摄食类群,滤食者为湑水河中最主要功能摄食类群.冗余分析结果表明,流速、总磷和电导率为影响汉江干支流底栖动物分布的关键环境因子.采用底栖动物生物指数(BI)和Shannon-Wiener指数进行水质生物评价,结果显示除汉江的极个别断面、湑水河和月河下游及旬河的中下游河段处于轻-中度污染状态外,其他调查河段均处于清洁状态.本研究结果可为汉江上游流域生态管理和科学保护提供依据.  相似文献   

6.
The authors investigated the influence of the cyanobacterium Anabaena spiroides on the occurrence of aquatic Hyphomycetes in the water of five water bodies of different trophy. The presence of cyanobacteria in the water of all five waters reduced the number of fungi species from 29 to 10. Such species as Angulospora aquatica and Mirandina corticola were found both in control samples and with cyanobacterium from all five waters examined.  相似文献   

7.
8.
Nutrient enrichment and changes in riparian tree species composition affect many streams worldwide but their combined effects on decomposers and litter decomposition have been rarely assessed. In this study we assessed the effects of experimental nitrogen (N) enrichment of a small forest stream on the decomposition of three leaf litter species differing in initial chemical composition [alder (Alnus glutinosa), chestnut (Castanea sativa) and poplar (Populus nigra)], incubated individually and in 2-species mixtures during late spring-early summer. To better understand the effects of litter mixing on litter decomposition, component litter species were processed individually for remaining mass and fungal reproductive activity. Litter decomposition rates were high. Nitrogen enrichment significantly stimulated litter decomposition only for alder incubated individually. Differences among litter treatments were found only at the N enriched site where the nutrient rich alder litter decomposed faster than all other litter treatments; only at this site was there a significant relationship between litter decomposition and initial litter N concentration. Decomposition rates of all litter mixtures were lower than those expected from the decomposition rates of the component litter species incubated individually, at the N enriched and reference sites, suggesting antagonistic effects of litter mixing. Conidial production by aquatic hyphomycetes for each sampling date was not affected by nutrient enrichment, litter species or mixing. Aquatic hyphomycetes species richness for each sampling date was higher at the N enriched site than at the reference site and higher for alder litter than for chestnut and poplar, but no effect of mixing was found. Aquatic hyphomycetes communities were structured by litter identity and to a lesser extent by N enrichment, with no effect of mixing. This study suggests that nutrient enrichment and litter quality may not have such strong effects on decomposers and litter decomposition in warmer seasons contrary to what has been reported for autumn-winter. Changes in the composition of the riparian vegetation may have unpredictable effects on litter decomposition independently of streams trophic state.  相似文献   

9.
In the present study, we used mitochondrial cytochrome oxidase subunit I (COI) and nuclear D2 region of 28S rDNA sequence data to examine the taxonomic status of the water mite species Hygrobates nigromaculatus from two types of freshwater habitats: lentic (lakes) and lotic (streams). Previous hypotheses about (sub)species status of populations inhabiting lakes and streams based on differences in morphometric data and life-cycle strategy (parasitic vs. non-parasitic larvae) were strongly supported by molecular data. Levels of COI and D2 28S rDNA differentiation between lake and stream populations were much higher (ca. 18 and 7.5%, respectively) than those typically observed for populations of a single species. Both lake and stream populations showed similar high levels of gene diversity (Hd = 0.894 and 0.836, respectively). However, nucleotide within-population polymorphism was more than twice as high in lake populations as that in stream populations (π = 1.33 and 0.60%, respectively). We hypothesize that the ancestral lake-dwelling population originated from a stream form with parasitic larvae (here: H. setosus nov. stat.). For the observed populations, H. nigromaculatus individuals could be separated from H. setosus by distinct morphometric characters. The loss of phoretic parasitic larvae greatly decreased dispersal ability of lake-dwelling mites and consequently also the gene flow between lake populations. Thus, relatively more differentiated genetic structure in lake populations probably results from a stronger isolation between particular lake habitats, but this hypothesis needs further extensive studies.  相似文献   

10.
The hyporheic zones constitute a major site of storage of organic matter and energy flow in freshwater ecosystems. To complement the studies carried out in North America and Europe, we evaluated the sediment quality and occurrence of aquatic hyphomycetes in coarse particulate organic matter (CPOM; ≥5 mm) and fine particulate matter (FPM; ≤1 mm) in three locations of Kaiga stream and eight locations of Kadra dam of the River Kali in Western Ghats. The pH of sediments of stream and dam was acidic (5.8-6.6) and the average organic carbon of stream sediments was higher than dam sediments (8.6% vs. 3.9%). Among the eight minerals monitored, Fe was highest in all sediments and Ni was below detectable limit in four dam sediments. Spores of aquatic hyphomycetes were directly released from the CPOM fractions of sediments upon bubble chamber incubation, while the FPM fractions produced spores indirectly by colonization of sterile leaf baits followed by bubble chamber incubation. The species richness and diversity in CPOM was higher than FPM in stream as well as dam sediments. The Sorensen's similarity indices between the fungal flora of CPOM in stream (66.7-81.8%) and dam (69.2-88%) locations were generally higher than FPM. The spore output per mg CPOM was between 1215 (dam) and 3384 (stream). The species richness was negatively correlated with Cr (P < 0.01; r = −1.000) of stream sediments, while it was negatively correlated with organic carbon (P < 0.05; r = −0.740) and positively correlated with K (P < 0.05; r = 0.750) of dam sediments. Occurrence and survival of aquatic hyphomycetes in hyporheic habitats of freshwater bodies indicate the importance of such zones as reservoir of fungal inoculum necessary in fundamental functions such as organic matter processing and energy flow. The present study provides baseline data on the sediment quality and fungal composition of stream and dam locations of River Kali of Kaiga region, which will develop as center of industrial activities in future.  相似文献   

11.
Stream temperature, an important measure of ecosystem health, is expected to be altered by future changes in climate and land use, potentially leading to shifts in habitat distribution for aquatic organisms dependent on particular temperature regimes. To assess the sensitivity of stream temperature to change in a region where such a shift has the potential to occur, we examine the variability of and controls on the direct relationship between air and water temperature across the state of Pennsylvania. We characterized the relationship between air and stream temperature via linear and nonlinear regression for 57 sites across Pennsylvania at daily and weekly timescales. Model fit (r2) improved for 92% (daily) and 65% (weekly) of sites for nonlinear versus linear relationships. Fit for weekly versus daily regression analysis improved by 0·08 for linear and 0·06 for nonlinear regression relationships. To investigate the mechanisms controlling stream temperature sensitivity to environmental change, we define ‘thermal sensitivity’ as the sensitivity of stream temperature of a given site to change in air temperature, quantified as the slope of the regression line between air and stream temperature. Air temperature accounted for 60–95% of the daily variation in stream temperature for sites at or above a Strahler stream order (SO) of 3, with thermal sensitivities ranging from low (0·02) to high (0·93). The sensitivity of stream temperature to air temperature is primarily controlled by stream size (SO) and baseflow contribution. Together, SO and baseflow index explained 43% of the variance in thermal sensitivity across the state, and 59% within the Susquehanna River Basin. In small streams, baseflow contribution was the major determinant of thermal sensitivity, with increasing baseflow contributions resulting in decreasing sensitivity values. In large streams, thermal sensitivity increased with stream size, as a function of accumulated heat throughout the stream network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The removal of native forest affects stream characteristics, processes, and organisms at the local scale. We compared the structure of fish assemblages between microbasins impacted by deforestation and those in pristine condition in the Amazonian Machado River basin, Brazil. Fish were collected with seine and dip nets along an 80-m stretch of 28 streams. At each site, we recorded physical, chemical, and land-water ecotone variables. We collected 6,586 specimens of 109 species, being 39 and 18 of them exclusively of forested and deforested streams, respectively. Non-significant differences were found for abundance and species richness between forested and deforested streams. A total of four main trophic groups were identified. Carnivores were more abundant in forested streams, whereas herbivores, omnivores and detritivores species were the most abundant in deforested streams. The deforested streams showed higher abundance and richness of algae and periphyton consumers, while forested streams presented higher abundance and richness of invertebrate consumers. Forested streams presented longer foodchains, higher occurrence and abundance of species that have more specialized habits and are intolerant to degraded environments, whereas generalist and tolerant species predominated in deforested streams. We conclude that species composition in Amazonian streams predictably responds to the degree of forest cover.  相似文献   

13.
Recent studies using water‐stable isotopes (δ18O and δ2H) have suggested an ecohydrological separation of water flowing to streams or recharging groundwater and water used by trees, known as the ‘two water worlds’ (TWW) hypothesis. In this study, we measured water isotopic composition in precipitation [open field and throughfall, i.e. local meteoric water line (LMWL)] and the mobile water compartment (i.e. stream and soil solution), bulk soil water and xylem water over a period of 1.5 years in two headwater catchments: NF, covered with old growth native evergreen forest (Aetoxicon punctatum, Laureliopsis philippiana and Eucriphya cordifolia), and EP, covered with 4 and 16‐year‐old Eucalyptus nitens stands. Our results show that precipitation, stream and soil solution plot approximately along the LMWL, while xylem waters from all studied tree species plot below the LMWL, supporting the TWW hypothesis. However, we also found evidence of ecohydrological connectivity during the wet season, likely controlled by the amount of antecedent precipitation. These observations hold for all investigated tree species. On both sites, a different precipitation source for stream and xylem water was observed. However, in EP, bulk soil showed a similar precipitation source as xylem water from both E. nitens stands. This suggests that E. nitens may use water that is recharging the bulk soil compartment. We conclude that under a rainy temperate climate, the TWW hypothesis is temporal and does not apply during wet seasons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Anthropogenic impacts can significantly alter stream nutrient and dissolved organic carbon (DOC) delivery and composition. Nutrient and DOC cycling in headwater streams, however, are linked via a variety of complex feedbacks that are, in part, influenced by DOC composition emphasizing the need to investigate coupled nutrient–DOC interactions. This study assessed differential incorporation and mineralization of 13C labeled glucose and vanillin by heterotrophic microbes within epilithic biofilm communities in four temperate headwater streams spanning a 100-fold range in total dissolved nitrogen and soluble reactive phosphorous concentrations. The substrates were traced via 13C analyses of DOC, dissolved inorganic carbon, bulk biofilm, and individual biofilm phospholipid fatty acids (PLFA) to assess total incorporation of the substrates and the distribution of substrate use within the heterotrophic community. Results indicate greater nutrient uptake by high nutrient streams with glucose additions relative to vanillin additions and support the hypothesis that nutrient retention in high nutrient streams is hampered by a lack of labile C sources. Vanillin-derived C uptake was only detectable in PLFA from the highest nutrient stream and was dominated by eukaryotic organisms, likely including fungi. This suggests biofilms in high nutrient streams are better adapted to access relatively slow turnover substrates perhaps due to their composition and overall structure. PLFA-based glucose use efficiencies were greatest in the lowest nutrient stream supporting the hypothesis that labile DOC sources are used more efficiently by heterotrophs in less impacted streams, while biofilms of high nutrient streams are better adapted to utilizing a wider array of DOC sources. This adaption is likely a result of exposure to the lower quality DOC pools in high-nutrient streams resulting from high DOC uptake supported, in part, by fast turnover autochthonous sources of DOC. Nutrient retention in nutrient-rich streams, however, is still likely limited by readily bioavailable DOC leading to lower nutrient retention and downstream nutrient enrichment.  相似文献   

15.
Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre‐existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Stream temperature is a key physical water‐quality parameter, controlling many biological, chemical, and physical processes in aquatic ecosystems. Maintenance of cool stream temperatures during summer is critical for high‐quality aquatic habitat. As such, transmission of warm water from small, nonfish‐bearing headwater streams after forest harvesting could cause warming in downstream fish‐bearing stream reaches with negative consequences. In this study, we evaluate (a) the effects of contemporary forest management practices on stream temperature in small, headwater streams, (b) the transmission of thermal signals from headwater reaches after harvesting to downstream fish‐bearing reaches, and (c) the relative role of lithology and forest management practices in influencing differential thermal responses in both the headwater and downstream reaches. We measured summer stream temperatures both preharvest and postharvest at 29 sites—12 upstream sites (4 reference, 8 harvested) and 17 downstream sites (5 reference, 12 harvested)—across 3 paired watershed studies in western Oregon. The 7‐day moving average of daily maximum stream temperature (T7DAYMAX) was greater during the postharvest period relative to the preharvest period at 7 of the 8 harvested upstream sites. Although the T7DAYMAX was generally warmer in the downstream direction at most of the stream reaches during both the preharvest and postharvest period, there was no evidence for additional downstream warming related to the harvesting activity. Rather, the T7DAYMAX cooled rapidly as stream water flowed into forested reaches ~370–1,420 m downstream of harvested areas. Finally, the magnitude of effects of contemporary forest management practices on stream temperature increased with the proportion of catchment underlain by more resistant lithology at both the headwater and downstream sites, reducing the potential for the cooling influence of groundwater.  相似文献   

17.
Steven M. Wondzell 《水文研究》2011,25(22):3525-3532
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth‐order, mountainous stream network. The size of exchange flows, relative to stream discharge (QHEF:Q), was large only in very small streams at low discharge (area ≈ 100 ha; Q < 10 l/s). At higher flows (flow exceedance probability > 0·7) and in all larger streams, QHEF:Q was small. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro‐environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

18.
We assessed leaf breakdown of five native riparian species from Brazilian Cerrado (Myrcia guyanensis, Ocotea sp., Miconia chartacea, Protium brasiliense, and Protium heptaphyllum), incubated in single and mixed species packs in two headwater streams with different physico-chemical properties in the Espinhaço Mountain range (Southeastern Brazil). Leaves were placed in plastic litter bags (15 cm×20 cm, 10 mm mesh size) and the experiments were carried out during the dry seasons of 2003 and 2004. Leaf nitrogen and phosphorus contents were similar in all species, but polyphenolic contents were different (P<0.001). M. guyanensis showed higher polyphenolics content (8.48% g−1 dry mass) and leaf toughness. Individually, higher breakdown rates were found in M. guyanensis at Indaiá stream (k=0.0063±0.0005 d−1) and in Ocotea sp. at Garcia stream (k=0.0088±0.0006 d−1). However, P. brasiliense and P. heptaphyllum showed lower breakdown rates at Indaiá and Garcia streams (Indaiá: k=0.0020±0.0002 and 0.0019±0.0001 d−1; Garcia: k=0.0042±0.0001 and 0.0040±0.0002 d−1). Single and mixed breakdown processes of each species were not statistically different on both streams. However, all species showed higher breakdown rates at Garcia stream (P<0.01). These results suggest that leaf breakdown is not altered when litter benthic patches are composed by a mixture of species in the same proportions that they occur on riparian leaf falls.  相似文献   

19.
The decomposition of plant litter is a fundamental ecological process in small forest streams. Litter decomposition is mostly controlled by litter characteristics and environmental conditions, with shredders playing a critical role. The aim of this study was to evaluate the effect of leaf species (Maprounea guianensis and Inga laurina, which have contrasting physical and chemical characteristics) and water nutrient enrichment (three levels) on leaf litter chemical characteristics and fungal biomass, and subsequent litter preference and consumption by Phylloicus sp. (a typical shredder in tropical streams). Maprounea guianensis leaves had lower lignin and nitrogen (N) concentrations, higher polyphenols concentration and lower lignin:N ratio than I. laurina leaves. Phosphorus concentrations were higher for both leaf species incubated at the highest water nutrient level. Fungal biomass was higher on M. guianensis than on I. laurina leaves, but it did not differ among nutrient levels. Relative consumption rates were higher when shredders fed on M. guianensis than on I. laurina leaves, due to the lower lignin:N ratio and higher fungal biomass of M. guianensis. Consumption rates on M. guianensis leaves were higher for those exposed to low water nutrient levels than for those exposed to moderate water nutrient levels. Feeding preferences by shredders were not affected by leaf species or nutrient level. The low carbon quality on I. laurina leaves makes it a less attractive substrate for microbial decomposers and a less palatable resource for shredders. Changes in litter input characteristics may be more important than short-term nutrient enrichment of stream water on shredder performance and ecosystem functioning.  相似文献   

20.
Benthic diatoms of an Alpine stream/lake network in Switzerland   总被引:1,自引:0,他引:1  
We compared the benthic diatom composition of lakes, and lake inlet and outlet streams in a high elevation catchment (∼2600 m a.s.l.) in the Swiss Alps. The catchment consisted of a southern basin mostly fed by glacial-melt water and a northern basin fed by snowmelt and groundwater. Streams in both basins flowed through a series of small lakes before converging into a lake with a primary outlet channel. The south basin had on average 4°C cooler water temperatures and 2× higher nitrate-N levels (up to 300 μg/L) than the north basin. In contrast, the north basin had higher levels (2–4×) of particulate-P, particulate-N, and particulate organic matter than the south basin. A total of 109 and 143 diatom species was identified in lakes and streams, respectively, with a similar number of species found in each basin. Aulacoseira alpigena and Achnanthidium minutissimum were common benthic algae in north basin lakes, whereas Achnanthes subatomoides, Achnanthes marginulata, Pinnularia microstauron, and Psammothidium helveticum were most common in south basin lakes. One disconnected lake in the north basin had an assemblage dominated by Tabellaria flocculosa (66%) and Eunotia tenella (14%). Principal components analysis showed a clear separation between the north and south basins in lotic diatoms. Of the 10 most common species, streams in the south basin had greater abundances of Psammothidium helveticum, Achnanthes helvetica var. minor, Achnanthes marginulata, Achnanthes subatomoides, and Diatoma mesodon than the north basin, whereas north basin streams had higher abundances of Achnanthidium minutissimum, Aulacoseira alpigena, and Luticola goeppertiana. Lake outlet assemblages were similar to respective downstream lake inlet assemblages, and assemblages changed in composition along each basins longitudinal flow path. However, Aulacoseira alpigena had higher average abundances in north basin outlets than inlets, and Achnanthidium minutissimum, Psammothidium helveticum, and Achnanthes helvetica var. minor had higher average abundances in south basin outlets than inlets. In contrast, Diatoma mesodon, Fragilaria capucina, and Gomphonema parvulum had higher average abundances in south basin inlets than outlets. The spatial patterns in species composition reflected the hierarchical interaction of landscape features (geology, hydrology) on longitudinal gradients (lake position) in the stream/lake network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号