首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The Maastrichtian Kathikas mélange is shown to be of sedimentary origin, being a succession of undeformed, submarine, matrix-supported debris-flow deposits up to 270 m thick. Internal sedimentological features include beds emphasized by colour or clast size variation, pelagic chalk interbeds, planar clast fabrics and channels. A trend of upwards-thinning beds in the mélange is interpreted as due to debris-flow initiation on gradually increasing slopes. Debris was shed locally from the deformed and fragmented Mamonia Complex, a series of disrupted gravity-slide sheets of Mesozoic sedimentary rocks and deformed igneous rocks. All Mamonia lithologies are represented in the mélange, and local facies variations permit identification of individual sources. The mélange probably pre-dates emplacement of serpentinite into the Mamonia Complex. There was also local inter-mixing of material from the adjacent and underlying Troodos sequences. The mélange rests unconformably on both Mamonia and Troodos sequences, and formed after the main deformation episode of the Mamonia Complex. The degree of resedimentation increases gradually away from the disrupted Mamonia source rocks. The thickness and volume of the Kathikas mélange are comparable with those of recent submarine debris flow deposits on unstable or seismically active continental margins.  相似文献   

2.
A belt of Jurassic to Cretaceous ophiolitic rocks borders the western margin of the U.S. Cordillera and stretches from central California to northwestern Washington State. The northern end of this belt lies between the San Juan Islands and the Northwest Cascades. Within this region, ophiolitic rocks consist of a succession of oceanic and arc-affinity igneous and sedimentary rocks which form a sedimentary mélange and sedimentary overlap sequence which is imbricated during the mid-Cretaceous. The mélange contains blocks and olistoliths of peridotite, plagiogranite, chert, basalt, and volcanoclastic conglomerate which range in size from a meter to over 1 km and are contained within a matrix of argillite and volcanoclastic breccia and conglomerate. Peridotites were exposed to the sub-aqueous surface along serpentinized shear zones prior to their incorporation into the mélange, and the sedimentary matrix of the mélange underwent brittle deformation during the earliest stages of its structural history. Mélange rocks are overlain in angular unconformity by a Jura-Cretaceous arc-sourced sedimentary succession which is at least 500 meters thick and passes upward from a basal breccia containing clasts of plagiogranite, gabbro, tonalite, chert, and basalt into argillite containing Late Jurassic radiolarians. The argillite is overlain by poorly-sorted greywacke and conglomerate with clast populations similar to those of the basal breccia. The conglomerate fines upward into a massive to bedded, feldspathic-lithic arenite and greywacke that yields mid-Cretaceous detrital zircons. The overlap succession and the mélange are deformed by two generations of highly-penetrative structures (D1a and D1b) which produced north-to-east vergent tight-to-isoclinal folds and axial-planar pressure-solution cleavages. All units are further deformed by three generations of penetrative structures. The successively younger NNE to NW, NE, and E-W to WNW trending folds have foliations that cross-cut the earlier structural fabrics and faults. Formation of the mélange required differential elevations during the time of deposition and the presence of rocks which are sourced from both arc and oceanic crust. Extension within the forearc provides a mechanism to exhume peridotites and generate differential topography for arc and oceanic affinity rocks to erode and be incorporated into the mélange as part of olistostromal deposits.  相似文献   

3.
JOHN MENZIES 《Sedimentology》1990,37(3):481-493
Examination of sediments along the north shore of Lake Erie at Mohawk Bay reveals a relationship between the formation of intensely brecciated diamictons and the presence of sand-block intraclasts. It is postulated that the sand blocks were subglacially deposited within a meltwater environment, and later frozen prior to being eroded and transported within a mobile subglacial debris layer. On immobilization the frozen sand blocks, encased within the diamicton, acted as a heat sink creating cryostatic stresses within the surrounding diamicton as a result of the advance of a frost front and related frozen ‘fringe’. The effect of these anisotropic stresses resulted in porewater migration to the frost front. Subsequent development of intense brecciation occurred as aureoles around the sand intraclasts due to localized high tensile stresses causing fracturing within the fine-grained matrix of the diamicton.  相似文献   

4.
The Batinah mélange which overlies the late Cretaceous Semail ophiolite in the northern Oman Mountains comprises mostly sedimentary rocks of deep-water facies, alkalic lavas and intrusives, all of continental margin affinities, together with smaller volumes of Semail ophiolitic and metamorphic rocks. Four intergradational textural types of mélange can be recognized. Sheet mélange has large (>1 km) intact sheets either with little intervening matrix or set in other mélange types, and with an organised sheet orientation fabric. Slab mélange is finer textured (>100 m) and more disrupted. Block mélange has smaller (> m) blocks with some matrix and a weak to random block fabric. Clast mélange is matrix-supported rudite with a weak depositional clast fabric. Structural relationships, particularly the absence of tectonic fabrics, the decreasing strength of fragment fabrics with increasing fragmentation, and the abundance of brittle fragmentation, suggest that these mélange types formed by either gravity-driven sedimentary processes or superficial sliding or thrusting of individual rock slabs.In the slab mélange, long sequences can be pieced together, passing up from Upper Triassic mafic sub-marine extrusives and sediments into radiolarian cherts, hemipelagic and redeposited limestones, and terminating in non-calcareous radiolarities with Mn-deposits of early Cretaceous age. Mafic sills are numerous. These sequences can be matched with sub-ophiolite rocks now exposed in fault corridors through the Semail. These sequences become progressively disrupted upwards in the corridors and can be traced continuously into overlying mélange, which then thins away from the corridors.We argue that, during late Cretaceous emplacement over the Arabian margin, active fault corridors split the Semail slab and acted as conduits up which sub-ophiolite rocks were supplied to the ophiolite surface. There the rocks were redisributed by superficial processes.  相似文献   

5.
This paper compares features of unambiguous tectonic serpentinite mélanges (TSM) or serpentinite shear zones in the Coast Range ophiolite, Franciscan subduction complex, of coastal California and Sierra City Mélange of the northern Sierra Nevada of northeastern California with undisputed sedimentary serpentinite mélange (SSM) of the Great Valley Group (GVG) forearc basin deposits of coastal California, and with Franciscan serpentinite mélanges of disputed (sedimentary versus tectonic) origin. The GVG sedimentary serpentinite mélanges and disputed Franciscan serpentinite mélanges share strongly similar matrix textures and block-matrix relationships at scales from tens of meters or more to petrographic scale but differ significantly from serpentinite shear zones and TSM. This comparison suggests shared (non-diagnostic) and distinguishing features of TSM versus SSM. Internal bedding or foliation in blocks is oriented subparallel to mélange boundaries and matrix foliation for both TSM and SSM both may have strongly foliated matrix and both may feature localized shearing in matrix around block borders, especially if an SSM underwent significant post-depositional deformation. The same holds true for deformation and dismemberment of blocks, which is the block-forming and mixing mechanism in TSM but variably exhibited in SSM. In contrast only SSM have blocks or clasts whose internal foliation or bedding terminates abruptly along clast/block boundaries with a mismatch in mineralogy and/or lithology across such boundaries. Matrix foliation cuts blocks/clasts in TSM but not in SSM. SSM may show block/grain size grading but not TSM. SSM have exotic blocks and blocks may span a range of metamorphic grade, whereas TSM lack exotic blocks and blocks are isofacial.  相似文献   

6.
The Chañaral tectonic mélange (northern Chile) is a local unit within the late Paleozoic accretionary complex formed at the southwestern margin of Gondwana. The structural characteristics of the studied mélange were mostly developed during a first deformation phase (D1) and include a block-in-matrix fabric, lineations (L1) and foliations (S1), tight to intrafoliar folds, S-C and S-C-C′ composite planar fabrics, and a conspicuous spatial separation of domains with predominantly linear and linear-planar fabrics. Folding during a second stage (D2) modified the orientation of the previous fabrics and structures. The eastern boundary of the Chañaral mélange is N-S to NNW-SSE oriented, moderately dipping to the east. Its western boundary is not exposed. The plane showing the maximum structural asymmetry (the vorticity normal section) is ENE-WSW directed, and sub-vertical. Kinematic criteria consistently reveal top-to-the-WSW displacement. A kinematic model of triclinic transpression with inclined extrusion has been applied to evaluate the D1 structural features of the Chañaral mélange. The pitch of the simple shear direction on the deformation plane ranged from 60°N to 90°. The pitch of the estimated extrusion direction was of 30°-40°S. The coaxial component was clearly constrictional (logarithmic K value of 2 to 5). The vorticity number has not been constrained by the model, but its spatial variation can explain the domainal distribution of the fabrics in the mélange. The simulated particle paths show the predominance of material displacement parallel to the margin, with low to moderate down-dip displacements, which is in accordance with the low-pressure metamorphic assemblages found in the mélange. The convergence direction between the blocks separated by the mélange unit was N50°-60°E. Kinematic blocking of the Chañaral mélange, probably related to the accretion of an oceanic volcanic domain, allowed the D2 folding of the previous structures, a process that, at least initially, proceeded without a change in the convergence direction.  相似文献   

7.
孕灾地质基因是指一定区域所具有的促进地质灾害孕生的内在关键因素。板块构造混杂岩带所处的特殊构造部位决定了其复杂的演化过程和特殊的地质基因。本文在梳理青藏高原构造混杂岩带地质特征的基础上,总结分析了其孕灾地质基因,包括活跃的地质构造、复杂的水热条件、混杂的岩性组合、特殊的蚀变软岩和构造岩溶导水通道等,是引发重大地质灾害和工程地质安全风险的根源。结合典型案例,剖析了构造混杂岩带大型滑坡的成因类型主要有三大类:构造控制型、泥质软岩控制型和蚀变蛇绿岩带控制型,其中蚀变蛇绿岩带是构造混杂岩带最具特色的易滑地质结构,具有典型的地质构造与特殊岩性联合控制特征。构造混杂岩带隧道工程变形破坏主要有塌方、水平收敛、环向收敛、底鼓和错断等五种模式,黏土化蚀变软岩的不良工程特性是制约构造混杂岩带隧道围岩稳定性的重要因素。针对传统的工程地质理论和灾害风险防控技术难以适应构造混杂岩带大规模工程建设面临的挑战,提出了有待深入研究的关键问题和防灾减灾策略。  相似文献   

8.
Metamorphosed tectonic blocks (or ‘knockers’) are widespread but volumetrically minor constituents of many circum-Pacific mélange belts, Due to the common lack of an exposed in situ provenance and to the seemingly chaotic field disposition of most block-bearing mélanges, their origin and uplift history are problematic and controversial. On the Indonesian island of Sulawesi a block-bearing mélange is overlain by an ophiolite nappe, the base of which is characterized by a metamorphic sole sequence. Petrological, geochemical and geochronological data indicate a direct genetic relationship between high-grade tectonic blocks in the mélange and amphibolites in the metamorphic sole. Amphibolite precursors to lower temperature blueschist assemblages are virtually ubiquitous in the tectonic blocks and subdivisions based on the nature of the overprinting relationships can be systematically correlated with block distribution patterns orientated subparallel to the strike of the mélange belt. It is suggested here that the high-grade tectonic blocks originated in a thin, thermally zoned metamorphic sheet welded to the oceanic hangingwall plate at the inception of subduction. Break-up of this sequence at depth, by tectonic erosion, led to dispersal of fragments into a newly developed serpentinite mélange wedge. Blocks experienced abrupt changes in P-T-X conditions due to a combination of hydration in the new fluid-rich environment, gradual cooling of the hangingwall over time and continuing underflow dragging sheared blocks deeper into the subduction zone, prior to upflow. Blocks plucked from the hangingwall at different depths and at different times evidently experienced uplift in different flow channels, resulting in block concentrations, with P-T-t paths characteristic of their source and flow trajectory, at systematically greater distances from the subduction zone hangingwall. The elucidation of the origin and significance of tectonic blocks in Sulawesi has important implications not only for the tectonometamorphic evolution of similar inclusions in other mélange belts, but also for models of the inception and early stages of subduction.  相似文献   

9.
10.
The origin of block-in-matrix mélanges has been the subject of intense speculation by structural and tectonic geologists working in accretionary complexes since their first recognition in the early twentieth century. Because of their enigmatic nature, a number of important international meetings and a large number of publications have been devoted to the problem of the origin of mélanges. As mélanges show the effects of the disruption of lithological units to form separate blocks, and also apparently show the effects shearing in the scaly fabric of the matrix, a tectonic origin has often been preferred. Then it was suggested that the disruption to form the blocks in mélanges could also occur in a sedimentary environment due to the collapse of submarine fault scarps to form olistostromes, upon which deformation could be superimposed tectonically. Subsequently it has proposed that some mélanges have originated by overpressured clays rising buoyantly towards the surface, incorporating blocks of the overlying rocks in mud or shale diapirs and mud volcanoes.Two well-known examples of mélanges from the Banda and Sunda arcs are described, to which tectonic and sedimentary origins were confidently ascribed, which proved on subsequent examination to have been formed due to mud diapirism, in a dynamically active environment, as the result of tectonism only indirectly. Evidence from the Australian continental Shelf to the south of Sumba shows that large quantities of diapiric mélange were generated before the diapirs were incorporated in the accretionary complex. Comparable diapirs can be recognised in Timor accreted at an earlier stage. Evidence from both Timor and Nias shows that diapiric mélange can be generated well after the initial accretion process was completed.The problem is: Why, when diapirism is so abundantly found in present convergent margins, is it so rarely reported from older orogenic belts? Many occurrences of mélanges throughout the world to which tectonic and/or sedimentary and origins have been ascribed, may in future investigations prove to have had a diapiric origin.It is emphasised that although the examples of diapiric mélange described here may contain ophiolitic blocks, they were developed in shelf or continental margin environments, and do not contain blocks of high grade metamorphic rocks in a serpentinous matrix; such mélanges originate diapirically during subduction in a mantle environment, as previous authors have suggested.  相似文献   

11.
Ocean plate stratigraphy (OPS) is essential to understanding accretionary wedges and complexes along convergent plate margins. Mélanges within accretionary wedges and complexes are the products of fragmentation and mixing processes during and following OPS accretion. A new term, ‘OPS mélange’, is proposed here for mélanges composed mostly of blocks of OPS with an argillaceous matrix, and for a mixture of mélanges of multiple origins with either broken or coherent formations. An OPS mélange results from the fragmentation and disruption of OPS, without admixing of other components. Three major types of OPS mélange can be distinguished on the basis of their components: turbidite type, chert–turbidite type, and limestone–basalt type. These three types potentially form similar mélanges, but they are derived from different parts of the OPS, depending on the level of the decollement surface. The concept of ‘OPS mélange’ can be applied to most of the mélanges in accretionary prisms and complexes worldwide. In addition, this proposal recognizes a distinction between processes of fragmentation and mixing of OPS components, and mixing of ophiolite components, the latter of which results in serpentinite mélanges, not OPS mélanges. Mélanges composed of OPS sequences occur worldwide. The recognition of OPS mélanges is a key aspect of understanding tectonic processes at convergent margins, which result in mélange formation in orogenic belts globally.  相似文献   

12.
The Alxa region, located in the southernmost part of Central Asian Orogenic Belt, is a key region for understanding the tectonic processes associated with the closure of the Paleo-Asian Ocean. Issues of late Paleozoic tectonic settings and tectonic unit divisions of the Alxa region still remain controversial. In this study, we report a new ophiolitic mélange named the Tepai ophiolitic mélange in the northern Alxa region, northwest of Alxa Youqi. The tectonic blocks in the Tepai ophiolitic mélange are mainly composed of serpentinized peridotites, serpentinites, mylonitized gabbros, gabbros, basalts, and quartzites, with a matrix comprising highly deformed clastic rocks. A gabbro exhibits a zircon LA-ICP-MS Ue Pb age of278.4 ± 3.3 Ma. Gabbros exhibit high Mg O and compatible element contents, but extremely low TiO_2,totally rare earth element and high field strength element contents. These rocks exhibit light rare earth element depleted patterns, and display enriched in large-ion lithophile elements and depleted in high field strength elements. Boninite-like geochemical data show that they were formed in a subductionrelated environment, and derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The Tepai ophiolitic mélange exhibits similar zircon U-Pb-O isotopic compositions and whole-rock geochemical characteristics to those of the Quagan Qulu ophiolite.Therefore, we propose that the Tepai ophiolitic mélange may have been the western continuation of the Quagan Qulu ophiolite. Our new finding proves the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

13.
在甘肃北山火石山地区新发现了蛇绿混杂岩,该混杂岩由蛇绿岩岩块和混杂基质组成。蛇绿岩块有纯橄岩、辉石橄榄岩、辉石岩、辉长岩、玄武岩及硅质岩等。基质为志留系中上统公婆泉群,主要是一套变凝灰质砂岩夹碳酸盐岩和少量安山岩。野外调查及室内鉴定结果显示蛇绿岩岩块和基质遭受了较强的变质变形。火石山蛇绿混杂岩位于红柳河、牛圈子蛇绿岩之间,且该蛇绿岩地球化学特征显示其同红柳河蛇绿岩相似,因此认为红柳河—牛圈子蛇绿混杂岩是通过火石山相连接。火石山蛇绿混杂岩的发现对研究该带洋陆时空演化提供了新的线索,对北山古生代构造背景研究具有重要意义。  相似文献   

14.
Multiple episodes of deformation during the tectonic evolution of orogenic belts and ancient subduction-accretion complexes cause obfuscation of primary block-in-matrix fabric of mélanges, and thereby making the recognition of their tectonic, sedimentary or diapiric origin difficult. Here we present a comprehensive overview and synthesis of a diverse set of field-based stratigraphic and structural criteria, which are at the base of geological mapping rules, to differentiate between various mélange types, developed by disparate geological processes and mechanisms. We first define the current concepts of mélange and mélange nomenclature, and describe the most diagnostic features of tectonic, sedimentary and diapiric mélanges at different scales. We discuss some of the main issues complicating the application of these diagnostic criteria, such as: (i) similarities between the block-in-matrix fabric of different mélange types formed in partially lithified sediments at shallow structural levels, (ii) transformation of fabric elements with increased depth due to tectonic reworking and recrystallization processes, (iii) significance of “exotic” versus “native” blocks in mélange matrix, and (iv) age relationships between blocks and matrix in a mélange. We introduce two additional criteria in approaching these complexities and in recognizing different processes of polygenetic mélanges formation in the field when primary diagnostic fabrics were reworked by multiple deformational events. These new criteria are based on (i) the coherence between lithological compositions of mélange components (blocks and matrix) and characteristics and tectonic evolution of the geodynamic setting of their formation (“tectonic environment criterion”), and (ii) specificity and kinematic coherence in the distribution of deformation between blocks and the matrix (“deformation criterion”). The discussed diagnostic criteria can be applied to all field-based investigations of mélanges and broken formations in orogenic belts and exhumed subduction-accretion complexes around the world, regardless of their location, age, and tectonic history.  相似文献   

15.
《China Geology》2018,1(4):477-484
Lichi mélange, located in the southern coastal range, eastern Taiwan, China, is a typical tectonic mélange of the plate’s boundary zone between the Eurasian Plate and the Philippine Sea Plate. It formed during the collision of the Luzon arc with the Eurasian Continent (arc-continent collision). It is composed of sandstone and/or mudstone matrix and many kinds and sizes of rock fragments, including some sedimentary rocks, volcanic rocks and a few metamorphic rocks. The serpentinite is one of the common fragments in the Lichi mélange. By the petrographic characteristics and the zircon U-Pb chronology analyses, protolith of the serpentinite is peridotite, the age is 17.7 ± 0.5 Ma. Taking the tectonic background into account, it is inferred that the serpentinite (serpentinised peridotite) come from the forearc basin (the North Luzon Trough) and was taken into the mélange by a second thrust westwards. The origin of the serpentinite in Lichi mélange is helpful to understand the formation of the Lichi mélange and can provide reliable detailed information for the study of the arc-continent collision orogenic activity in and offshore Taiwan.  相似文献   

16.
Long-lived subduction complexes, such as the Franciscan Complex of California, include tectonic contacts that represent exhumed megathrust horizons that collectively accommodated thousands of kilometres of slip. The chaotic nature of mélanges in subduction complexes has spawned proposals that these mélanges form as a result of megathrust displacement. Detailed field and petrographic relationships, however, show that most Franciscan mélanges with exotic blocks formed by submarine landsliding. Field relationships at El Cerrito Quarry in the eastern San Francisco Bay area suggest that subduction slip may have been accommodated between the blueschist facies metagreywacke of the Angel Island nappe above and the prehnite-pumpellyite facies metagreywacke of the Alcatraz nappe below. Although a 100–200 m-thick mélange zone separates the nappes, this mélange is a variably deformed, prehnite-pumpellyite facies sedimentary breccia and conglomerate deposited on the underlying coherent sandstone, so the mélange is part of the lower nappe. A 20–30 m-thick fault zone between the top of the mélange, and the base of the Angel Island nappe displays an inverted metamorphic gradient with jadeite-glaucophane-lawsonite above lawsonite-albite assemblages. This zone has a strong seaward (SW)-vergent shear fabric and hosts ultracataclasite and pseudotachylite. These relationships suggest that significant subduction megathrust displacement at depths of 15–30 km was accommodated within the 20–30 m-thick fault zone. Field studies elsewhere in the Franciscan Complex suggest similar localization of megathrust slip, with some examples lacking mélanges. The narrow megathrust zone at El Cerrito Quarry, its uniform sense-of-shear, and the localization of slip along the contact of, rather than within a mélange, contrast sharply with the predictions of numerical models for subduction channels.  相似文献   

17.
As one of the mélanges in the southern side of the Yarlung-Zangbo suture zone, the Saiqu mélange in southern Tibet is important for understanding the evolution of the Neo-Tethys ocean. The age of the Saiqu mélange, however, has been debated due to the lack of reliable fossil evidence in matrix strata. Based on lithological similarities with platform strata in southern Tibet and limited fossils from exotic blocks, previous studies variously ascribed the Saiqu mélange to be Triassic in general, Late Triassic, or Late Cretaceous. Here we reported planktonic foraminiferal faunas from the matrix strata of the Saiqu mélange. The new fossils yield a Late Cretaceous age, which is so far the best age constraint for the mélange. Regional stratigraphic correlation indicates that the Cretaceous Oceanic Red Beds (CORBs) in Saiqu may be time equivalent to the CORBs of the Zongzhuo Formation in neighboring regions. Thus the Saiqu mélange should be correlated to the Upper Cretaceous Zongzhuo Formation rather than the Triassic Xiukang Group, as previously suggested.  相似文献   

18.
The Palaeozoic to Mesozoic accretionary complexes of southwest Japan include various types of mélange. Most mélanges are polygenetic in origin, being sedimentary or diapiric mélanges that were overprinted by tectonic deformation during subduction. Sedimentary mélanges, without a tectonic overprint, are present in the Permian accretionary complexes of the Akiyoshi and Kurosegawa belts and in the Early Cretaceous accretionary complex of the Chichibu Belt. These mélanges are characterized by dominant basalt and limestone clasts, within a mudstone matrix. The basalt and limestone clasts within the sedimentary mélanges were derived from ancient seamounts. Subduction of a seamount results in deformation of the pre-existing accretionary wedge, and it is difficult to incorporate a seamount into an accretionary wedge; therefore, preservation of seamount fragments requires a special tectonic setting. Oceanic plateau accretion might play an important role in interrupting the processes of subduction and accretion during the formation of accretionary complexes. Especially the Mikabu oceanic plateau might have caused the cessation of accretion during the Early Cretaceous. The subduction and accretion of volcanic arcs and oceanic plateaux helps to preserve sedimentary mélanges from tectonic overprinting by preventing further subduction.  相似文献   

19.
Himalayan fold belt has full of geological surprises, ‘mélange’ is one of them which create difficulties during tunneling. Such mélange completely went unnoticed during surface mapping and geotechnical investigation preceding the construction of the Udhampur railway tunnel (URT). During the construction, the mélange zone has encountered across the tunnel, which occurs along the Tanhal thrust (equivalent to MBT) that separates the Murree Group and the Shiwalik Group. The mélange was characterized by a chaotic, heterogeneous geological mixture of stronger blocks (scale independence) and weaker sheared fine-grained matrix, often termed as “block-in-matrix rocks” or bimrocks, which enforced mixed face tunneling. The heterogeneity in a tectonic mélange led to stress concentrations in the rock blocks, and there were relatively high deformations within the matrix also. Release of stress from the blocks due to excavation, with unfavorable joint and thrust orientations enforced brittle failure of the blocks (face and crown collapses) while matrix deformation (time dependent) caused convergence of primary support later. Additionally, the clay minerals with high swelling potential within the matrix swelled and created pressure on the primary support. Due to the geomechanical heterogeneity in mélange, homogenizing the rock-mass by the commonly used quantitative systems might have lead to an inappropriate design and construction. The adopted New Austrian Tunneling Method (NATM) proved to be an useful tool for tunneling.  相似文献   

20.
The Divrigi and Kuluncak ophiolitic mélanges are located in central Anatolia in the Tauride ophiolite belt. The stratigraphic sequence in the Divrigi ophiolitic mélange includes, from bottom to top, the Upper Jurassic-Lower Cretaceous Akdag limestone, Upper Cretaceous Çalti ultramafic rocks, and the Curek listwaenite. The Divrigi ophiolitic mélange is intruded by the Late Cretaceous-Eocene Murmano pluton. The above stratigraphic sequence is followed by the Eocene-Paleocene Ekinbasi metasomatite and the Quaternary Kilise Formation.

The oldest sequence of rocks in Kuluncak ophiolitic mélange in the GuvenÇ area is the Karadere serpentine/ultramafic body overlain successively by the Kurtali gabbro, Gundegcikdere radiolarite, the GuvenÇ listwaenites, and the Buldudere Formation. All of these units are Late Cretaceous in age. The Karamagra siderite deposit in the Hekimhan area probably was formed in the Lower Cretaceous at the contact between Çalti ultramafic rocks and the Buldudere Formation. The Kuluncak ophiolitic mélange was intruded by a subvolcanic trachyte in the Late Cretaceous. The Eocene-Paleocene Konukdere metasomatite, the Miocene Yamadag volcanic rocks, and Quaternary slope deposits are late in the stratigraphic sequence in the GuvenÇ area.

The Kuluncak ophiolitic mélange in the Karakuz area is similar to that at GuvenÇ; however, gabbro, radiolarite, and Miocene volcanic rocks are not present. The Miocene is represented by the Ciritbelen Formation at Karakuz and the Karakuz iron deposit is hosted by a Late Cretaceous subvolcanic trachyte.

The rareearth and trace-element concentration of serpentinite in the Divrigi and Kuluncak ophiolitic mélanges indicate that all of the ultramafics and their alteration products were derived from a MORB, which was depleted in certain elements and oxides. The results expressed in this study support the idea that the Divrigi and Kuluncak ophiolitic mélanges within the Tauride ophiolite belt originated from Northern Tauride oceanic lithosphere (Poisson, 1986), instead of a northern branch of Neo-Tethys (Sengor and Yilmaz, 1981).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号