首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of negative skin friction on circular piles in a consolidating layered soil is investigated by an elasto-plastic load transfer theory which accounts for slippage of the soil. The elastic load transfer theory is premised on the compatibility condition that the vertical displacement of the ‘pile’ is equal to the summation of the vertical displacement of the layered soil due to the consolidation of the upper soil layer and the vertical displacement in the ‘soil layers’ along the pile’s centroidal axis caused by a system of pile-soil interactive forces. Slippage of the soil is accounted for by imposing the shear strength of the clay layer as the limit of the pile-soil interface shear stress. The saturated upper clay is consolidating under a uniform surcharge in accordance with Terzaghi’s one-dimensional consolidation theory. The validity of the proposed solution is confirmed by comparison with field measurements. Extensive parametric studies with regard to the effect of pile-soil slip on pile behaviour are presented.  相似文献   

2.
A numerical method of analysis based on elasticity theory is presented for the analysis of axially and laterally loaded pile groups embedded in nonhomogeneous soils. The problem is decomposed into two systems, namely the group piles acted upon by external applied loads and pile–soil interaction forces, and a layered soil continuum acted upon by a system of pile–soil interaction forces at the imaginary positions of the piles. The group piles are discretized into discrete elements while the nonhomogeneous soil behaviour is determined from an economically viable finite element procedure. The load–deformation relationship of the pile group system is then determined by considering the equilibrium of the pile–soil interaction forces, and the compatibility of the pile and soil displacements. The influence of soil nonlinearity can be studied by limiting the soil forces at the pile–soil interface, and redistributing the ‘excess forces’ by an ‘initial stress’ process popular in elasto-plastic finite element analysis. The solutions from this approach are compared with some available published solutions for single piles and pile groups in homogeneous and nonhomogeneous soils. A limited number of field tests on pile groups are studied, and show that, in general, the computed response compares favourably with the field measurements.  相似文献   

3.
Battered piles are usually used to counteract lateral forces in a pile group. As there is little spacing between piles, they are affected by one another, and there is interaction between them. In this study, pilesoilpile interaction in a group of battered piles was numerically simulated using finite element analysis. Double and frictional pile groups under static lateral and axial loadings were analyzed separately. The effects of batter angle, slenderness ratio, spacing between piles, pile–soil stiffness ratio, and soil plasticity on interaction factors were computed and presented in curves.  相似文献   

4.
通过对某高速铁路特大桥群桩基础进行三维非线性有限元分析,并结合现场试验得出的规律进行相应的对比分析,研究了软土地层桥梁群桩基础桩身轴力、桩侧摩阻力、基底土体附加应力、孔隙水压力分布、超孔隙水压力消散和群桩基础荷载沉降规律。计算结果表明,基桩所承受的轴力,角桩>边桩>中心桩,角桩和边桩的轴力沿桩身减小的幅度较大,而中心桩的轴力沿桩身减小的幅度稍小;各基桩桩侧摩阻力的发挥情况,侧摩阻力值总体上呈角桩>边桩>中心桩,相对滑移量基本呈上大下小的形态,即桩身上部桩-土之间产生的相对滑移量较中下部要大;外荷载作用下产生的土体附加应力和超孔隙水压力主要集中在承台底以下土体的一定范围内,其衰减梯度沿深度方向逐渐降低,随着固结时间的延长,群桩基础沉降达到稳定。  相似文献   

5.
林智勇  戴自航 《岩土力学》2014,35(Z1):221-226
群桩中各基桩在地基土中的加筋与遮帘效应是客观存在的,然而,在目前的桩基沉降理论与实践中,相关的研究仍显不足。基于剪切变形法理论,考虑桩的加筋与遮帘效应,求得各基桩在自身桩顶荷载作用下产生的沉降以及其引起相邻桩的附加沉降量,由此提出群桩中任两桩的相互作用系数简化公式,同时,也得到各基桩桩侧及桩端桩-土接触等效弹簧刚度,并基于荷载传递法原理,建立了成层地基条件下各基桩在自身桩顶荷载作用下的桩身位移平衡方程,推导出各土层层顶处桩身沉降、轴力与层底处桩身沉降、轴力之间的递推关系,进而将公式推广到高、低承台群桩基础计算中。工程算例分析表明,用该方法计算有较高的精度,求得的荷载-沉降曲线及两桩相互作用系数与实测值吻合较好;相互作用系数要明显小于弹性理论计算结果。  相似文献   

6.
A series of centrifuge shaking table model tests are conducted on 4?×?4 pile groups in liquefiable ground in this study, achieving horizontal–vertical bidirectional shaking in centrifuge tests on piles for the first time. The dynamic distribution of forces on piles within the pile groups is analysed, showing the internal piles to be subjected to greater bending moment compared with external piles, the mechanism of which is discussed. The roles of superstructure–pile inertial interaction and soil–pile kinematic interaction in the seismic response of the piles within the pile groups are investigated through cross-correlation analysis between pile bending moment, soil displacement, and structure acceleration time histories and by comparing the test results on pile groups with and without superstructures. Soil–pile kinematic interaction is shown to have a dominant effect on the seismic response of pile groups in liquefiable ground. Comparison of the pile response in two tests with and without vertical input ground motion shows that the vertical ground motion does not significantly influence the pile bending moment in liquefiable ground, as the dynamic vertical total stress increment is mainly carried by the excess pore water pressure. The influence of previous liquefaction history during a sequence of seismic events is also analysed, suggesting that liquefaction history could in certain cases lead to an increase in liquefaction susceptibility of sand and also an increase in dynamic forces on the piles.  相似文献   

7.
The optimisation of pile groups is studied using an optimisation technique in conjunction with a discrete element method for pile group settlement analysis. It is demonstrated that it is possible to optimise the performance of pile groups by minimising the load differentials between piles and/or differential settlements. This could be achieved by apportioning the lengths of the group piles to meet the requirement of their positions in the group. Numerical examples are presented to illustrate this principle.  相似文献   

8.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to vertical, lateral, and moment loads, using a hybrid model in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. Both the vertical and lateral resistances of the piles as well as the raft base are incorporated into the model. Pile–soil–pile, pile–soil–raft and raft–soil–raft interactions are taken into account based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with several existing methods for single piles, pile groups and piled rafts. Workable design charts are given for the estimation of the lateral displacement and the load distribution of piled rafts from the stiffnesses of the raft alone and the pile group alone. Additionally, parametric studies were carried out concerning batter pile foundations. It was found that the use of batter piles can efficiently improve the deformation characteristics of pile foundations subjected to lateral loads. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents the analysis of creep settlement of pile groups for line pile groups, square pile groups, and rectangular pile groups undergoing creep settlements over a period of time. The soil is treated as a viscoelastic material and is modeled using a three-parameter viscoelastic model. The damping component (dashpot) takes care of the permanent time-dependent deformations in three-parameter viscoelastic model. An approach suggested by Mindlin has been employed to calculate the stress distribution along the pile length in a group. The viscoelastic problem is converted into an elastic problem by the application of Laplace transform. Results in the form of variation of interaction factors for parameters such as pile length to diameter ratio, pile spacing, Poisson's ratio, and modulus ratio have been presented. Comparison has been made between interaction factors for piles groups undergoing immediate settlements and creep settlements. Finally, a typical predictive example has been presented for a 3 × 3 pile group showing creep settlement. The load rearrangement due to creep settlements causes about 5% to 35% increase in base resistance over time. Interaction factors for pile groups (2 × 1, 3 × 1, 2 × 2, and 3 × 2) undergoing creep settlement is about 15% to 55% higher than the interaction factors considering only the immediate settlements for pile group spacing less than or equal to 5d.  相似文献   

11.
锚杆静压桩技术在既有建筑物增设地下空间中的应用   总被引:4,自引:2,他引:2  
贾强  应惠清  张鑫 《岩土力学》2009,30(7):2053-2057
运用锚杆静压桩技术在既有建筑物中增设地下空间是可行的,一方面可利用既有建筑物的自重荷载作为压桩的反力,另一方面将压好的桩作为临时托换构件支撑的既有建筑物,建筑物下方的土体才可以开挖。对于黏性土,采用逐根压桩的方案,把所有桩压至设计标高后,待超孔隙水压力消散,才开挖承台下的土体。对于砂性土,可以边开挖土方边压桩,通过控制压桩和挖土速度,很好地控制建筑物的沉降。桩身四周的土体开挖后,其稳定性按照自由长度较大的高承台桩的模型进行分析。锚杆静压桩的压桩阻力是根据土层动力触探的指标确定的,锚杆静压桩的数量根据使用阶段、施工阶段的荷载以及桩身自由段的屈曲稳定性综合确定。按照新旧混凝土界面初始滑移承载力,进行承台的抗冲剪设计是有足够的安全储备的,此时冲剪承载力由几个斜向混凝土柱承担,而承台的下部受拉。锚杆静压桩之间的沉降差会在上部结构中产生附加内力,影响到结构安全。沉降差的计算采用分层总和法,计算时应考虑桩身的重力荷载、桩顶集中荷载等产生的附加应力以及土体开挖附加应力的减少。  相似文献   

12.
层状地基群桩沉降计算的剪切位移解析算法   总被引:1,自引:0,他引:1  
考虑群桩的“束缚作用”,基于剪切位移法的理论,提出了竖向荷载作用下用于层状地基大规模群桩沉降分析的简捷实用的解析算法。以单桩位移积分方程为基础,导出了桩顶位移与轴力和桩底位移与轴力之间的关系,考虑桩-桩相互作用,得出了计算群桩沉降的柔度矩阵方程。推导过程中,桩被分成任意n段,因此该方法可以用于地基土任意分层的群桩沉降计算。算例分析表明,该方法与边混合法和界元法有较好的一致性。  相似文献   

13.
为了研究软岩地基桥桩的荷载传递性状、破坏机理,并获取在该地质条件下更为可靠的桩基计算参数,对秦巴山区软岩地基3根钻孔灌注试桩进行竖向静载试验。结果表明:秦巴山区软岩地基桥桩试桩荷载沉降曲线呈陡降型,实测竖向极限承载力为20 500kN,桩的破坏方式为桩身材料强度破坏;淤泥质亚黏土地层中的碎石起到一定的骨架作用,增强了此地层桩极限侧阻力,发挥极限侧阻力所需的桩土(岩)相对位移为4~8mm;强风化砾岩表现为加工软化型,发挥极限侧阻力所需的桩土(岩)相对位移为3~8mm;中风化砂砾岩表现为明显的加工硬化型,所需的桩岩相对位移大,且桩极限侧阻力的特征点不明显;淤泥质亚黏土地层桩侧阻力占总荷载的60%~70%,随着桩顶荷载的逐步加大,该地层桩侧阻力所占比例不断下降,而嵌岩段桩侧阻力所占比例逐渐上升,达到55%~65%,嵌岩段桩侧阻力沿桩深的分布曲线表现出非线性的特征;试桩为端承摩擦桩,桩端阻力约占桩顶荷载的20%左右,且未充分发挥,在上部结构允许的沉降范围内,适当增加桩端的沉降有利于端阻力的发挥;桩侧阻力先于端阻力发挥,建议单桩承载力设计时分别采用不同的端阻力和侧阻力安全系数。  相似文献   

14.
Numerical analysis of axially loaded vertical piles and pile groups   总被引:3,自引:0,他引:3  
A numerical method, based on a simplified elastic continuum boundary element method, is presented for the settlement analysis of axially loaded vertical piles and pile groups. The soil flexibility coefficients are evaluated using the analytical solutions for a layered elastic half space. Results are presented and compared with existing published solutions for the following cases: (i) piles in homogeneous soil, (ii) piles in finite soil layer, (iii) piles end-bearing on stiffer layer, (iv) piles socketted into stiffer bearing layer, and (v) piles in Gibson soil. Reasonably good agreement is obtained between the present solutions and existing published solutions.  相似文献   

15.
Disconnected piled raft foundations are characterised by no structural connection between the upper raft and the underlying piles, mostly playing the role of settlement-reducers. The resulting raft–pile gap is usually filled with a granular interlayer, through which the loads from the superstructure are transferred to the piles.In this paper, the complex interaction mechanisms involving the foundational components (raft, piles and soil) are numerically investigated by means of 3D finite elements analyses, accounting for soil non-linearity. The main features of the soil–structure interaction mechanisms under purely vertical external loads are explored over a realistic range of raft–soil gaps for different pile configurations, in which the number of piles – i.e. their spacing – is varied. Special attention is also devoted to the structural response of the piles in terms of axial and bending internal stress resultants. In particular, while disconnection beneficially affects the structural pile response, increasing the raft–pile gap tends to reduce the overall settlement/stiffness efficiencies.The numerical results being presented are in substantial agreement with the outcomes from literature small-scale experiments and suggest a number of relevant theoretical inferences.  相似文献   

16.
梁鑫  程谦恭  陈建明  李良广 《岩土力学》2015,36(7):1865-1876
目前有关采空区桥梁群桩基础的受力机制和沉降特性的研究成果还十分匮乏。以合肥-福州高速铁路官山底特大桥采空区群桩基础为原型进行缩尺模型试验研究。根据相似理论计算出模型相似常数,试验确定相似材料后进行模型制作,通过多级荷载试验获取了桩的内力,桩间土的应力,桩、承台、土和采空巷道顶板的沉降3大类数据,得出了模型中桩和桩间土的荷载特性和基础沉降规律。研究表明:采空区对桩承载力的影响与荷载大小成反比关系;所有桩均未出现桩侧负摩阻力,穿过采空区的桩的侧摩阻力分布重心下移程度较正常地层桩明显;采空区群桩不均匀沉降存在临界荷载值,超过此值后,采空区顶板岩土层与基础下正常岩土层的差异沉降不再增加。基于试验结果和理论分析,建立了以现有规范为基础的采空区单桩承载力计算公式和采空区群桩沉降计算公式。  相似文献   

17.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
古海东  杨敏 《岩土力学》2014,35(12):3531-3540
采用同济大学中型岩土离心机进行了2组疏排桩支护基坑的离心机模型试验,结合三维有限元数值分析探讨了采用规范方法计算疏排桩支护基坑桩身内力与变形的适宜性,并提出了考虑土拱效应的疏排桩支护基坑桩侧土压力的理论计算方法,最后建立了考虑土拱效应的疏排桩支护基坑桩身内力和变形的计算模型。研究结果表明:对于桩间距与桩径之比为2、3和8的疏排桩支护基坑,桩间土体无法形成土拱效应;对于桩间距与桩径之比为4~7的疏排桩支护基坑,桩间土拱效应明显;规范法计算得到桩身内力与变形结果要比离心机试验结果偏大,与规范方法相比,采用文中提出的计算方法计算疏排桩支护基坑桩身内力与变形更为合理。  相似文献   

19.
The method of “p–y” curves has been extensively used, in conjunction with simplified numerical methods, for the design and response evaluation of single piles. However, a straightforward application of the method to assess the response of pile groups is questionable when the group effect is disregarded. For this reason, the notion of p-multipliers has been therefore introduced to modify the “py” curves and account for pile group effect. The values proposed for p-multipliers result from pile group tests and are limited to the commonly applied spacing of 3.0 D and layout less than 3 × 3, restricting the applicability of the method to specific cases. With the aim of extending the applicability of the “py” method to pile groups, the authors have already proposed a methodology for estimating the “p Gy G” curves of soil resistance around a pile in a group for clayey soils. A complementary research allowing for the estimation of the “p Gy G” curves for sandy soils is presented in this paper. The well-known curves of soil resistance around the single pile in sandy soils are appropriately transformed to allow for the interaction effect between the piles in a group. Comparative examples validate the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used in a most accurate manner in estimating the distribution of forces and bending moments along the characteristic piles of a group and therefore to design a pile foundation more accurately.  相似文献   

20.
非均质地基中群桩竖向荷载沉降关系分析   总被引:2,自引:0,他引:2  
江杰  黄茂松  顾倩燕 《岩土力学》2008,29(8):2092-2096
运用剪切位移法计算了桩轴向荷载传递因子。对于桩端采用线性的荷载传递函数,推导了基于弹塑性模型的单桩竖向荷载沉降的解析解。分析过程中考虑了土体强度沿深度线性变化的特性和桩土间的滑移现象,因此更符合大部分土体的实际性状。在此基础上,建立了考虑桩土滑移的桩-桩相互作用系数的计算公式,并将上述方法应用于群桩的分析,获得了群桩的荷载沉降特性。该分析方法克服了目前应用较多的弹性理论方法夸大桩土相互作用的缺点,单桩和群桩的荷载沉降曲线的分析结果和实测数据吻合,证明了该方法的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号